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Foreword

The development of quantum chromodynamics over the past few decades as the
accepted theory of the strong interactions has transformed almost every aspect
of nuclear physics. Many major experimental nuclear physics programs being
conducted today at national laboratories in the USA are directly related to QCD,
including determination of the internal structure of hadrons and the nature of
confinement at Jefferson Laboratory, the properties of the quark gluon plasma at
Brookhaven, and the measurement of the neutron electric dipole moment at Oak
Ridge National Laboratory. Even in more traditional nuclear structure studies,
such as anticipated at the rare isotope beam facility (FRIB) under construction
at Michigan State University, the theoretical framework often used today consists
of overlapping techniques, with mean field and energy density functionals being
used for the heaviest nuclei, shell models for the intermediate mass, numerical
solutions of the Schrödinger equation for light nuclei—and underlying all that, the
fundamental inter-nucleon interactions based on an effective field theory for QCD,
which itself is increasingly informed by direct computation from lattice QCD.

There are various techniques for making theoretical progress in QCD: perturba-
tion theory for high energy collisions, phenomenological effective field theories for
low energy processes, and innovative models such as the color glass condensate for
low-x physics. However, much of the physics of interest to nuclear physics must be
computed nonperturbatively and so for many applications, lattice QCD is the ideal
method.

We are now living in a “golden age” for lattice QCD as applied to nuclear
physics. This is due to the confluence of increased hardware speed, as well as
enormous progress in the past decade in improving computational algorithms. Just
as important, though, is the increased awareness among nuclear physicists that we
are on the threshold of finally being able to use lattice QCD to accurately answer
many of the outstanding questions in nuclear physics. As lattice QCD becomes one
of the most potent tools for theorists to unlock the secrets of the nucleus, it becomes
increasingly important to train young scientists in the subject. Thus it is with great
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pleasure that the INT has hosted this summer school in lattice QCD, and with great
anticipation of what this new generation of scientists will eventually teach us.

Seattle, WA, USA David B. Kaplan
April 2014



Preface

Perhaps the most fascinating aspect of the strong interaction of particle physics is
the wealth of qualitatively different regimes it exhibits. Modern nuclear physics
deals with phenomena typically occurring at energy, momentum, temperature, or
density scales between a few MeV and a few GeV. A relatively new goal in the field
is to connect nuclear phenomena directly to the fundamental theory of the strong
interaction, quantum chromodynamics. QCD has only a few free parameters, and it
is remarkable that so much can, in principle, be predicted from so little.

In certain regimes, such as low-energy nuclear few-body systems, effective field
theories provide a systematic approach. QCD can then be used to determine their
low-energy parameters and to test their range of validity. But certain observables,
like the spectrum of excited hadrons and the charge distributions of the nucleon,
or the transition from the hadronic phase of QCD to a plasma phase at high
temperatures, have no obvious simpler description in terms of effective degrees of
freedom. A systematic treatment then involves the full complexity of QCD.

Lattice QCD provides a framework to handle the theory of the strong interaction
from first principles in a wide range of energies relevant to nuclear physics. It
is a discretized formulation of QCD on a spacetime lattice which preserves its
SU(3) gauge symmetry. The latter is key to its ability of handling the theory in its
non-perturbative regime. Numerical techniques and high-performance computing
are an essential part of lattice QCD. The success of lattice QCD calculations
depends thus on its practitioners being proficient both in quantum field theory and
in programming and numerical methods.

In the summer school held at the Institute for Nuclear Theory in Seattle,
6–24 August 2012 (http://www.int.washington.edu/PROGRAMS/12-2c/), a series
of courses were delivered, aimed at giving graduate students not only an overall
understanding of lattice gauge theory, but also at covering in detail how one applies
lattice gauge theory to the calculation of key quantities in nuclear physics. The
list of lectures held at the school is given hereafter. State-of-the-art algorithms
for generating gauge ensembles and fermion propagators were covered. Students
performed numerical exercises on using lattice QCD code, analyzing and fitting
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viii Preface

data, and on utilizing new hardware, such as graphics processing units (GPUs) and
the CUDA environment. In this book you will find the contents of the lectures on
the most central physics topics written up. We hope that they provide an accessible
and solid introduction to nuclear physics applications in lattice QCD for graduate
students and any interested physicist.

Seattle, WA, USA Huey-Wen Lin
Mainz, Germany Harvey B. Meyer
April 2014
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Chapter 1
Lattice QCD: A Brief Introduction

H.B. Meyer

Abstract A general introduction to lattice QCD is given. The reader is assumed
to have some basic familiarity with the path integral representation of quantum
field theory. Emphasis is placed on showing that the lattice regularization provides
a robust conceptual and computational framework within quantum field theory.
The goal is to provide a useful overview, with many references pointing to the
following chapters and to freely available lecture series for more in-depth treatments
of specifics topics.

1.1 Introduction and Scope

Lattice QCD is a framework in which the strong interactions can be studied from
first principles, from low to high energy scales. It is a mature subject started in
1974 [1]. Deep inelastic experiments had shown that in reactions involving a very
high momentum transfer, weakly coupled quarks appear as the prominent degrees
of freedom at the interaction point. The asymptotic states of the theory, however,
were clearly bound states of quarks called hadrons. Lattice QCD provided for
the first time a framework in which this apparent dichotomy could be addressed.
However, due to the complexity of non-perturbative phenomena at low energies, it
is only with the advent of supercomputers that the approach acquired the potential
of being quantitatively predictive [2]. By now, lattice QCD is an important source
of information for tests of the Standard Model, where it provides results for
various hadronic matrix elements that are complementary to those obtained using
phenomenological approaches. It has also become a viable basis for calculations of
nuclear few-body quantities (see chapter “Nuclear Physics from Lattice QCD”), and
for the exploration of part of the QCD phase diagram (chapter “High Temperature
and Density in Lattice QCD”).

The goal of this introduction is to give a concise overview of the theoretical
basis on which the lattice QCD calculations described in the following chapters

H.B. Meyer (�)
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2 H.B. Meyer

rest. Several textbooks are available [3–6] for more detailed introductions. Quantum
field theory has many facets, and those that are of central importance in lattice QCD
are not necessarily the ones most emphasized in standard QFT textbooks, which are
mostly concerned with the perturbative calculation of the scattering amplitudes. The
presentation is meant to help the interested reader orient himself in the subject, and
also to provide the young practitioner with a minimum background to embark on a
lattice calculation. A number of excellent lecture series on more specific topics are
freely available on the arXiv preprint server, and often I refer the reader to them.
The reader is assumed to have had some exposure to the path integral formulation
of quantum field theory, and to have some familiarity with the basics of strong
interaction physics.

1.2 The Lattice Formulation of Quantum Field Theory

In this section we introduce lattice field theory as a way to ‘discretize’ continuum
field theories. The Euclidean path integral is introduced, but the discussion remains
largely at the classical level; quantum effects are treated in the next sections. We
treat the cases of the scalar, Dirac spinor and (non-Abelian) gauge fields.

1.2.1 Scalar Field Theory

In this chapter we will be working entirely in d -dimensional Euclidean space; the
scalar product of two vectors reads a � b D a�ı��b� D a�b� and there is no
distinction between covariant and contravariant indices.

The Euclidean partition function for a real scalar field � reads

Z D
Z
D� exp.�SŒ��/ (1.1)

with the measure formally defined as D� D Q
x d�.x/. In continuum field theory,

the action in d spacetime dimensions is defined as

SŒ�� D
Z
ddx

�
1

2
.@��.x//

2 C 1

2
m2�2 C 1

4Š
��4

�
: (1.2)

The parameter m corresponds to the mass of the scalar particle and � to the
strength of its self-interaction. The path integral measure needs to be given a precise
meaning, since the partition function (1.1) involves an integral over an accountable
number of degrees of freedom. If a perturbative treatment of the theory is desired,
propagators and Feynman rules can nonetheless be derived and the corresponding
momentum integrals can be regulated using dimensional regularization.
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The lattice regularization provides an intuitive way of rendering the number
of degrees of freedom countable and all correlation functions finite. The limit of
the lattice spacing going to zero can be taken once the (renormalized) correlation
functions have been calculated; it is referred to as the ‘continuum limit’. Here the
interactions do not have to be treated perturbatively.

We will restrict ourselves to four-dimensional cubic lattices,

� D
n
x 2 R

d
ˇ̌
x D a n; n 2 Z

d
o
: (1.3)

The length a is referred to as the lattice spacing. A lattice field �.x/ is the
assignment of a real number to every point on the lattice.

We write unit vectors in the four directions as O�, � D 0; 1; : : : d . In order
to formulate an action for the lattice field theory, it is natural to introduce the
discretized forward and backward derivatives

@��.x/ D 1

a
.�.x C a O�/ � �.x//; @?��.x/ D

1

a
.�.x/� �.x � a O�//;(1.4)

as well as the symmetric derivative Q@� D 1
2
.@� C @?�/. Discretizing the continuum

action in the same way one would discretize differential equations, (making the
simplest choices) we arrive at

SŒ�� D ad
X
x

�
1

2
.@��.x//

2 C 1

2
m2�.x/2 C 1

4Š
��.x/4

�
: (1.5)

Exercises

1. Show that the finite-difference operators @�, @�
� all commute.

2. Show the following properties of the forward and backward derivatives:

@�.�.x/ .x// D @��.x/ .x/ C �.x/@� .x/C a@��.x/@� .x/;(1.6)

ad
X
x

�.x/@��.x/ D �ad
X
x

@�
��.x/ �.x/: (1.7)

3. Show that in the �!1 limit, the scalar lattice action reduces to the Ising model

SIsing D �	
X
x


.x/
.x C a O�/ (1.8)

with the rescaled field 
.x/ taking values in Z2 D fC1;�1g. Remember that
additive constants in the action do not influence correlation functions and can be
dropped.
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4. Generalize the lattice treatment of the scalar field theory to a complex scalar
field, and to a two-component complex scalar field. The latter case is the relevant
model for the Standard Model Higgs.

1.2.1.1 Analysis in Momentum Space

It is worth recalling the representation of lattice fields in momentum space, perhaps
familiar to the reader from condensed matter physics. If we set

Q�.p/ D ad
X
x

e�ipx�.x/; (1.9)

then clearly Q�.p C 2�
a
n/ D Q�.p/ for n 2 Z

d . The independent momenta are
therefore restricted to the Brillouin zone,

B D
n
p 2 R

d
ˇ̌
ˇ jp�j � �

a

o
(1.10)

and the position-space field can be written as

�.x/ D
Z
B

ddp

.2�/d
eipx Q�.p/: (1.11)

This representation shows very clearly that the lattice thus introduces a momentum
cutoff of order 1

a
, since higher-momentum modes do not appear in Eq. (1.11).

Exercises

1. Show that in momentum space the forward and backward derivatives operators
act multiplicatively with the factors

@� �! 1
a
.eiap� � 1/; (1.12)

@�
� �! 1

a
.1 � e�iap�/; (1.13)

Q@� �! i Vp�; (1.14)

4 �
X
�

@�
�@� �! � Op2; (1.15)

where

Vp� � 1
a

sin.ap�/; Op� � 2
a

sin. 1
2
ap�/: (1.16)
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2. Show that the propagator is given by

h�.x/�.y/i D
Z
B

ddp

.2�/d
eip.x�y/

Op2 Cm2
(1.17)

D
Z �=a

��=a
dd�1p
.2�/d�1

e�˝p jx0�y0jCip.x�y/

2
a

sinh.a˝p/
(1.18)

with ˝p D 2
a

asinh. a
2

q
Op2 Cm2/. The second equality is best established using

contour integration (see Sect. 1.2.2.2).

1.2.1.2 Symmetries

A very important aspect of any regularization is, how much symmetry of the original
action (1.2) it preserves. More precisely, the question is which of the discrete
symmetries and which of the continuous symmetry generators are preserved. It is
clear that translations, rotations and boosts are no longer continuous symmetries of
the lattice action. This is a general downside of the lattice regularization: it breaks
space-time symmetries, i.e. the Poincaré group, and only a discrete subgroup remain
as a symmetry. Recalling that Noether’s theorem applies to continuous symmetries,
this implies that on the lattice we cannot expect to find four conserved currents
associated with space-time symmetries (the energy-momentum tensor). Fortunately
this does not represent an obstacle to most calculations, for reasons explained below.

Exercise Give the list of symmetries of the complex scalar field theory on the
lattice. Apart from Poincaré symmetry, have any other symmetries of the continuum
theory been broken by the regularization? Give the expression of the conserved
current associated with the U(1) symmetry transformation

�0.x/ D ei˛�.x/; .��/0.x/ D ��.x/e�i˛: (1.19)

1.2.2 Fermions

From here on, we consider field theories in four spacetime dimensions. In the
continuum Euclidean theory, the action for a Dirac fermion of mass m reads

SfŒ ; N � D
Z
d4x N .x/.��@� Cm/ .x/ (1.20)
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where all four 4 � 4 matrices �� are hermitian and satisfy f��; ��g D 2ı�� .
Correspondingly, the propagator, which coincides with the Green’s function of
.��@� Cm/, reads

h .x/ N .y/i D
Z

d4p

.2�/4
eip.x�y/

ip=Cm (1.21)

with p= � p���. Via Wick’s theorem, n-point functions can be expressed as a sum
of products of propagators with appropriate minus signs.

The original Wilson formulation of fermions on the lattice assigns a Dirac spinor
 .x/ to every lattice site x 2 �. The corresponding action [1] reads

SfŒ ; N � D a4
X
x

N .x/.Dw Cm/ .x/; (1.22)

Dw D
X
�

�
�� Q@� � a@�

�@�

�
: (1.23)

The first-order derivatives are discretized symmetrically in the first term, but an
additional term proportional to the lattice Laplacian operator has been added. It is
clear that the first-order derivatives alone would not couple neighbouring points,
thereby not attributing a large action to certain high-momentum modes; this feature
would lead to unwanted additional long-range degrees of freedom called ‘doublers’.
The doubling problem is fixed by the addition of the Laplacian term. A more precise
analysis will be given below in momentum space.

Exercises

1. Verify that the following transformations are symmetries of the Wilson action:
Parity:

 .x/! �0 .x0;�x/; N .x/! N .x0;�x/�0 I (1.24)

Euclidean time reversal: with �5 � �0�1�2�3,
 .x/! �0�5 .�x0;x/; N .x/! N .�x0;x/�5�0 I (1.25)

Charge conjugation1:

 .x/! . N .x/�0�2/>; N .x/! .�0�2 .x//
>: (1.26)

1This transformation law applies for certain representations of the Dirac matrices, e.g.

�0 D
�
0 1

1 0

�
; �i D

�
0 �i
 i
i
 i 0

�

with 
i the Pauli matrices.
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2. Give the expression of the conserved current associated with the U(1) symmetry
transformation

 0.x/ D ei˛ .x/; N 0.x/ D N .x/e�i˛: (1.27)

3. With respect to the obvious scalar product of lattice fermion fields, show that the
Wilson-Dirac operator satisfies the �5-hermiticity relation

D
w D �5Dw�5: (1.28)

1.2.2.1 Path-Integral Representation of Correlation Functions

Wick’s theorem for fermionic n-point functions (see for instance [7], Sec. 4.2.2)
has a representation in terms of a path integral over Grassmann variables. Let us
recall how this works. Let �1; : : : ; �n and N�1; : : : ; N�n be anticommuting generators
of a Grassmann algebra. Let also � and N� be n-component vectors of anticommuting
variables and A an n � n c-number matrix. If the ‘integration’ rules are defined as

Z
d�i D

Z
d N�i D 0; (1.29)

Z
d�i �j D

Z
d N�i N�j D ıij; (1.30)

Z
d�i N�j D

Z
d N�i �j D 0; (1.31)

then the Gaussian integral for the generating functional

ZŒ�; N�� �
Z
d�1 : : : d�n d N�1 : : : d N�n (1.32)

exp
�
�
X
i;j

. N�iAij�j /C
X
i

. N�i �i C N�i�i /
�

is given by

ZŒ�; N�� D c � det.A/ exp
�X

i;j

N�i .A�1/ij�j
�
: (1.33)

Note that the determinant appears in the numerator rather than in the denominator.
Applying this machinery to a lattice fermion field (�i WD  ˛.x/,A WD DwCm), one
obtains the following ‘path-integral’ representation of the lattice n-point functions,

h .x1/ : : :  .xn/ N .y1/ : : : N .yn/i (1.34)

D 1

ZŒ0; 0�

Z
DŒ �DŒ N � .x1/ : : :  .xn/ N .y1/ : : : N .yn/ exp.�SfŒ ; N �/
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with

DŒ � D
Y
˛;x

d ˛.x/; DŒ N � D
Y
˛;x

d N ˛.x/: (1.35)

Since Wick’s theorem gives all correlation functions in terms of the propagator,
only the latter remains to be specified. Using Eq. (1.14, 1.15), the expression for the
propagator is easily found,

h .x/ N .y/i D
Z
B

d4p

.2�/4
eip.x�y/

i
P

�. Vp���/C 1
2
a Op2 Cm: (1.36)

The spectrum of a theory is given by the location of the poles in its two-point
functions. To find the poles, we first rewrite the momentum-space propagator as

1

i
P

�.�� Vp�/C 1
2
a Op2 Cm D

�iP�.�� Vp�/C 1
2
a Op2 Cm

Vp2 C . 1
2
a Op2 Cm/2 : (1.37)

Exercises

1. Show that

Vp2� D Op2� �
1

4
a2 Op4�: (1.38)

2. Use this identity to write the denominator of Eq. (1.37) as

Vp2 C . 1
2
a Op2 Cm/2 D ˛.p/ Op20 C 
.p/; (1.39)

˛.p/ � 1C amC 1

2
a2 Op2

; (1.40)


.p/ � m2 C .1C am/ Op2 C 1

2
a2
X
k<l

Op2k Op2l : (1.41)

3. Conclude that the poles of the propagator are located at p0 D ˙i!p with

!p � 2

a
asinh

�a
2

p

.p/=˛.p/

�
D
p
m2 C p2 C O.a/: (1.42)

1.2.2.2 The Propagator in the Time-Momentum Representation

A representation of correlation functions that is particularly useful in lattice QCD is
the mixed time-momentum representation .x0;p/. The reason is that it allows for a
spectral interpretation in terms of energy eigenstates of definite overall momentum
p. Having located the poles of the propagator, its time-momentum representation
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can be obtained by a contour integration using the residue theorem. We choose a
rectangular contour with one side coinciding with the segment Œ��=a; �=a� on the
real axis, and long vertical sides going up for x0 � y0 > 0. The contributions from
the vertical sides of the rectangle cancel each other, and the contribution from the
horizontal side at large Imp0 is exponentially small; therefore, the

R �=a
��=a integral is

entirely given by the residue of the integrand at the pole p0 D Ci!p ,

h .x/ N .y/i x0>y0D
Z �=a

��=a
d 3p

.2�/3
e�!p.x0�y0/eip�.x�y/�.p/; (1.43)

�.p/ D
8<
:
�i�� Vp� C 1

2
a Op2 Cm

˛.p/.�i/ @ Op20
@p0

9=
;
p0Di!p

: (1.44)

Explicitly, the result is

h .x/ N .y/i x0¤y0D
Z �=a

��=a
d 3p

.2�/3
e�!p jx0�y0jCip�.x�y/

2Ep

� (1.45)

�
sign.x0 � y0/ 1

a
sinh.a!p/�0 � i� � Vp C 1

2
a Op2 Cm � a
.p/

2˛.p/

�
:

with Ep defined in Eq. (1.47). The case x0 < y0 is treated analogously and can be
checked by using relation (1.28).

Exercises

1. Show that

�.p/ D 1

2Ep

�
1

a
sinh.a!p/�0 � i� � Vp C 1

2
a Op2 Cm � a
.p/

2˛.p/

�
; (1.46)

Ep � ˛.p/

a
sinh.a!p/: (1.47)

2. For the case x0 D y0, show by direct calculation of the p0 integral that

h .x/ N .y/i x0Dy0D
Z �=a

��=a
d 3p

.2�/3
eip�.x�y/

2Ep

� (1.48)

�
�i� � Vp C 1

2
a Op2 CmC 2Ep � a
.p/

2˛.p/

�
:

3. Verify, using Eqs. (1.48) and (1.45), that the propagator satisfies

.Dw Cm/h .x/ N .y/i D 1

a4
ıx;y: (1.49)
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1.2.3 Gauge Fields

We start by recalling a few properties of gauge fields in the continuum. The fermion
theory (1.20) has a global U(1) symmetry. If the single fermion field is replaced
by anN -tuplet (corresponding toN ‘colors’), the global symmetry becomesU.N/.
Here we will focus on the SU(N ) subgroup. Promoting the latter symmetry to a local
one requires introducing gauge fields A�.x/ D Aa�.x/T a 2 su.N / belonging to the
Lie algebra. We will use traceless hermitian generators T a, normalized according to
Tr fT aT bg D 1

2
ıab and satisfying the commutation relations ŒT a; T b� D if abcT c:

The structure constants f abc are real and totally antisymmetric. With �.x/ 2
SU.N /, the gauge-transformed fields are defined as

 �.x/ D �.x/ .x/; N �.x/ D N .x/�.x/�1; (1.50)

A��.x/ D �.x/A�.x/�.x/�1 C i�.x/@��.x/�1: (1.51)

The covariant derivative of the fermion field

D� .x/ D .@� � iA�.x// .x/ (1.52)

then transforms like  .x/ and the fermion action

SfŒ ; N � D
Z
d4x N .x/.��D� Cm/ .x/ (1.53)

is gauge invariant. The field strength tensor

G�� D Ga
��T

a � @�A� � @�A� � i ŒA�;A�� (1.54)

(or equivalentlyGa
�� D @�Aa� � @�Aa� C f abcAb�A

c
�) transforms covariantly,

G�
��.x/ D �.x/G��.x/�.x/�1: (1.55)

Fig. 1.1 Geometric
interpretation of the
dynamical variables  .x/
and U�.x/ on a cubic
spacetime lattice. The product
U�.x/ .x C a O�/ transforms
in the same way as  .x/
under the gauge
transformation (1.50). The
plaquette defined in
Eq. (1.64) is also displayed

�
�ν̂

μ̂

�ψ(x) ψ(x + aμ̂)��
Uμ(x)

�

� ��

Pμν(y)

y
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In particular, the gauge action

SgŒA� D 1

2g20

Z
d4x Tr fG��.x/G��.x/g (1.56)

is gauge invariant.
The logic to be followed is similar on the lattice. We consider a gauge

transformation acting on a lattice fermion field as in Eq. (1.50). The raison d’être of
the gauge field is to make finite-difference operators gauge covariant. Specifically,
if U�.x/ 2 SU.N / is a variable which transforms as

U�
� .x/ D �.x/U�.x/�.x C a O�/�1; (1.57)

then

r� .x/ � 1

a

�
U�.x/ .x C a O�/ �  .x/

�
: (1.58)

transforms like  .x/ itself (see Fig. 1.1). Because of its role in the finite-difference
operator, U�.x/ is naturally associated with the ‘link’ joining the points x and x C
a O�. It is therefore referred to as a ‘link variable’. Similarly,

r�
� .x/ �

1

a

�
 .x/ � U�.x � a O�/�1 .x � a O�/

�
: (1.59)

also transforms like  .x/.
From the classical point of view that the lattice action ought to be a discretization

of the continuum action, the question of the relation between the link variableU�.x/
and the continuum gauge field A�.x/ poses itself. To answer this question we recall
the definition of a Wilson line. If x.s/ is a path from x.0/ D y to x.1/ D z, the
Wilson line for a given gauge field is defined by a path-ordered exponential,

U.ŒA�I z; y/ D P exp
�
i

Z 1

0

ds
dx�
ds

A�.x.s//
�

(1.60)

� 1C
1X
nD1

in
Z 1

0

ds1

Z s1

0

ds2 : : :
Z sn�1

0

dsn
dx�1
ds1

: : :
dx�n
dsn
� (1.61)

� A�1.x.s1// : : : A�n.x.sn//:

A crucial property of the Wilson is its transformation under a gauge transformation
(1.51) of the field A�.x/,

U.ŒA��I z; y/ D �.z/U.ŒA�I z; y/�.y/�1: (1.62)



12 H.B. Meyer

Comparing this transformation law to Eq. (1.57), we conclude that the link variable
can (at the classical level) be thought of as the straight Wilson line going from
x C a O� to x, defined on the continuum gauge field.

Exercises

1. Show that Ut � U.ŒA�I x.t/; y/ satisfies .@t C Px�.t/A�.x.t///Ut D 0 with
U0 D 1.

2. Prove that U.ŒA�I z; y/ 2 SU.N /. Hint: show that @t .U

t Ut / D 0.

3. Prove relation (1.62). Hint: show that �.z.t//U.ŒA�I z.t/; y/�.y/�1 satisfies the
differential equation in Exercise (1) for the gauge transformed field A�.

1.2.4 Lattice QCD

Given the transformation property (1.58) of the covariant derivative, the following
fermion action is gauge invariant,

SfŒ ; N ;U � D a4
X
x

N .x/.Dw Cm0/ .x/; (1.63)

Dw D
X
�

.�� Qr� � ar�r�
�/

with r�, r�
� and Qr� respectively the forward, backward and symmetrized covariant

derivatives, Qr� D 1
2
.r� Cr�

�/. More generally, operators such as

N .x/�� .x/; N .x/��r� .x/; and N .z/U�1.z/ : : : U�n.y � a O�n/ .y/;

where a quark and an antiquark field are joined by a product of link variables along
a given path, are gauge invariant.

Gauge invariant operators made solely of the link variables are easily con-
structed. The gauge transformation of a Wilson line returning to its starting point,
U.ŒA�Iy; y/ is a similarity transformation (see Eq. (1.57)), and therefore the trace
of the loop is gauge invariant. The simplest non-trivial Wilson loop on the lattice is
the plaquette

P��.x/ D U�.x/U�.x C a O�/U�.x C a O�/�1U�.x/�1: (1.64)

The trace Tr fP��.x/g is gauge invariant. For a long-wavelength classical continuum
field A�.x/, it must therefore be possible to represent it as a linear combination
of local gauge invariant operators with appropriate powers of the lattice spacing



1 Lattice QCD: A Brief Introduction 13

a to get the dimensions right. The lowest-dimensional non-trivial gauge invariant
operator is Tr fG��.x/G�
 .x/g. A straightforward calculation then shows that

P��.x/ D N � 1
2
a4Tr fG��.x/G��.x/g C : : : (1.65)

The simplest lattice action for the gauge fields is thus

SgŒU � D 2

g20

X
x

X
�<�

Re Tr f1� P��.x/g: (1.66)

The total action

SŒU; ; N � D SfŒU;  ; N �C SgŒU � (1.67)

can thus be regarded (for N D 3) as a discretization of the continuum QCD action.
For every quark flavor u; d; s; c : : : , a term (1.63) is added to the action with the
appropriate (bare) quark mass.

The details of the action (1.67) appear quite arbitrary, however, the precise form
of the action should not matter—in a sense specified in Sect. 1.3—in the regime
where the correlation lengths are much longer than the lattice spacing. For instance,
another widely used type of fermion action is the Kogut-Susskind or ‘staggered’
action [8,9]. See [10] for a description of staggered fermions as they are used today.

Exercise How do the discrete symmetries C , P and T act on the lattice gauge
fields for the action (1.67)?

1.2.4.1 The Path Integral

So far we have presented a lattice action for the fermion and gauge fields. In order
to fully formulate the quantum theory, we need to specify the integration measure in
the path integral. While this was done in Sect. 1.2.2.1 for the fermions, the definition
of the measure

DŒU � D
Y
x;�

dU�.x/ (1.68)

still needs to be given. With an integration measure in hand, expectation values are
defined as2

hO1 : : :Oni D 1

Z

Z
DŒU �

Z
DŒ �DŒ N � O1 : : :On exp.�SŒU; ; N �/: (1.69)

2The partition function Z is chosen such that h1i D 1.
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The measure is required to be ‘SU.N / invariant’; that is

Z
dU f .UV/ D

Z
dU f .VU/ D

Z
dU f .U / 8V 2 SU.N /: (1.70)

An immediate consequence of this property is the following. Suppose we calculate
the expectation value of OŒ ; N ;U �. The latter operator can be decomposed into
irreducible representations of the SU(N ) symmetry group associated with any given
point x. It then follows from Eq. (1.70) and the gauge invariance of the action that
all the non-singlet contributions vanish. A further crucial observation is that gauge-
fixing is not required for the path integral to make sense, because the volume of the
gauge group is finite,

Z Y
x

d�.x/ D 1: (1.71)

An explicit form for the measure is given in the exercise below.

Exercises If U 2 SU.N / is parametrized by t1; : : : tn, n � N2 � 1, let

gij � �2Tr
n
.U�1 @

@ti
U / .U�1 @

@tj
U /
o

(1.72)

1. Verify that gij is a positive-definite metric on SU(N ).
2. Let

dU D c dt1 : : : dtn
p

det.g/ (1.73)

with c chosen such that
R

dU D 1. Show that the measure is independent of the
parametrization.

3. Show that property (1.70) is satisfied.

1.3 The Approach to the Continuum and Renormalization

We give an overview of how the weak-coupling expansion is set up in the lattice
regularization. A systematic and rigorous derivation of the expansion can be found
in [11]; many explicit formulae are given in [12]; and a general strategy for
numerical perturbative computations was first given in [13]. We then discuss the
renormalization group, the approach to the continuum and the ‘improvement’ of the
lattice theory.
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1.3.1 The Weak-Coupling Expansion

The perturbative expansion is based on the idea that for g0 very small, the path
integral should be dominated by the fields that minimize the action. Perturbation
theory is then a saddle point expansion around such field configurations. The gauge
fields minimizing SgŒU � are of the form U�.x/ D �.x/�.x C a O�/�1 and are
thus gauge-equivalent to the ‘unit-configuration’ U�.x/ D 1 8�; x. The small
fluctuations of the link variables are then parametrized by a gauge potential,

U�.x/ D exp.ig0aA�.x//; A�.x/ D Aa�.x/T a: (1.74)

If the plaquette entering the action is expanded in the A�.x/,

P��.x/ � exp.ig0a
2G��.x//; G��.x/ D Ga

��.x/T
a; (1.75)

then one finds

SgŒU � D a4

4

X
x

Ga
��.x/G

a
��.x/C O.g20/; (1.76)

G��.x/ D @�A�.x/ � @�A�.x/C O.g0/: (1.77)

The relations familiar from continuum field theory are thus recovered, with the
derivatives replaced by finite differences. One can also show that the Jacobian of
the change of integration variables is of the form

dU�.x/ D
� N2�1Y
aD1

dAa�.x/
� �
1C g20N

12
a2Ab�.x/A

b
�.x/C : : :

�
: (1.78)

Although the lattice QCD path integral exists even prior to gauge fixing, an
important aspect of perturbation theory is to factor out the integration over the
gauge group. One can show that the condition @�

�A� D 0 is equivalent to the
condition that the variation �@!A�.x/ of the field A�.x/ under any infinitesimal
gauge transformation �.x/ D 1C i�!.x/ is orthogonal to A�.x/ itself3; it is thus
a natural gauge-fixing condition. The result of the procedure is that the perturbative
expansion of an observable O is given by the functional integral

hOi D 1

Z

Z
DŒU �DŒc�DŒ Nc�OŒU � exp.�StotŒA; c; Nc�/; (1.79)

3With respect to the scalar product .A; B/ D a4
P

x;�;a A
a
�.x/B

a
�.x/.



16 H.B. Meyer

where c and Nc are Fadeev-Popov ghosts, and

StotŒA; c; Nc� D SgŒU �C SgfŒA�C SFPŒA; c; Nc�; (1.80)

SFPŒA; c; Nc� D a4
X
x

Nca.x/4ab
FPc

b.x/; (1.81)

SgfŒA� D �0a
4

2

X
x

@�
�A

a
�.x/@

�
� A

a
�.x/: (1.82)

It is understood that U�.x/ D exp.ig0aA�.x// and that the integration measure
is given by Eq. (1.78), and the Fadeev-Popov operator is given by 4FP!.x/ �
g0@

�
� @!A�.x/.

The gauge-fixed action leads to Feynman rules in the usual way. The gauge-field
and ghost propagators read

hAa�.x/Ab�.y/i D ıab
Z
B

d4p

.2�/4
ei.p.x�y/C 1

2 ap�� 1
2 ap�/

Op2 � (1.83)

�
ı�� � .1 � ��1

0 /
Op� Op�
Op2

�
;

hca.x/cb.y/i D ıab
Z
B

d4p

.2�/4
eip.x�y/

Op2 : (1.84)

In the continuum formulation, a momentum cutoff can be problematic in gauge
theories since the modes that are cut off depend on the gauge. The way the lattice
regularization preserves the consequences of gauge invariance (BRS symmetry [14])
while introducing a momentum cutoff is that more and more vertices appear at
higher orders.

The fermions also lead to Feynman rules as in the continuum; the propagator was
given in Eq. (1.36), and the quark-quark-gluon vertex is given by

ig0.T
a/ij

�
�� cos. 1

2
a.p C p0/�/ � i sin. 1

2
a.p C p0/�/

�
; (1.85)

with p the incoming momentum of a quark with color index j and p0 the outgoing
momentum of the other quark line.

The vertices rapidly become algebraically complex to write down. It soon
becomes essential to employ an automated way of generating the Feynman
rules [13], see [15] for an overview of recent results obtained in this way. High-
order lattice perturbation theory has been used to determine the strong coupling
constant [16].
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1.3.2 The Renormalization Group

Lattice QCD (see Eqs. (1.63), (1.66), (1.67)) can formally be viewed as a four-
dimensional classical statistical mechanics system. Thus removing the cutoff from
the quantum field theory, i.e. taking the continuum limit, can be viewed as the
approach to a second order phase transition where all correlation lengths in lattice
units4 diverge. First the values of the parameters for which this happens must be
found. We consider initially the case of the pure-gauge theory.

For illustration, we consider one particular observable that may be computed in
perturbation theory, the rectangular Wilson loop

L�.x; d/ � U�.x/U�.x C a O�/ : : : U�.x C .d � a/ O�/; (1.86)

W��.x; d; d
0/ � L�.x; d/L�.x C d O�; d 0/L�.x C d 0 O�; d/�1L�.x; d 0/�1 (1.87)

As we shall see in Sect. 1.4.1, if we define a static potential V.R/ via

hW0k.x;R; T /i T!1D c.R/ exp.�TV.R//C : : : ; (1.88)

it has the interpretation of the potential energy between two quarks in the limit where
the latter become infinitely massive. To remove an ultraviolet-divergent additive
constant, we consider the ‘static force’ F.R/ � � @V

@R
. Computationally, the force

also depends on the bare coupling and the lattice spacing.5 A one-loop calculation
in the pure SU(N) gauge theory yields the result

F.R; g0; a/
R�aD CF

4�R2

�
g20 C

11N

24�2
g40.log.R=a/C c/C O.g60/

�
(1.89)

with CF D .N 2 � 1/=.2N / and c a numerical constant. Now, we expect the force
at a fixed separation R to reach a finite limit when a ! 0. The form (1.89) clearly
shows that this is only possible if g0 is adjusted as a function of a. How exactly
it must be adjusted can be worked out by requiring that F actually be independent
of a,

0 D a d
da
F.R; g0.a/; a/ D

�
a
@

@a
� ˇ.g0/ @

@g0

�
F.R; g0; a/

ˇ̌
ˇ
g0Dg0.a/

; (1.90)

with

ˇ.g0/ � �a@g0
@a
: (1.91)

4The correlation lengths � are defined by the fall-off of correlation functions, C.x/ �
exp.�jxj=�/.
5Dimensional analysis implies F.R; g0; a/ D 1

a2
OF .R=a; g0/.



18 H.B. Meyer

Inserting the one-loop expression (1.89) into Eq. (1.90), one finds

ˇ.g0/ D �b0g30; b0 D 11N

48�2
: (1.92)

The definition (1.91) of ˇ.g0/ can now be read as a differential equation for g0. The
negative value of the beta function means that g0 must be made smaller in order to
reduce the lattice spacing. The asymptotic solution of the differential equation is

g20 D �
1

b0 log.a�/
C : : : (1.93)

This is the expression of the ‘asymptotic freedom’ property of QCD at the level of
the bare regularized theory. Note that an arbitrary mass scale � had to be introduced.
Its appearance is sometimes referred to as dimensional transmutation.

More generally, consider first the pure SU(N) gauge theory in perturbation
theory. The bare parameters of the theory, g0 and �0, as well as the momentum-
space bare n-point correlation functions G0.p1; : : : ; pn/ of the gauge potential
Aa�, can be traded for renormalized parameters g; � and renormalized correlation
functions G.p1; : : : ; pn/. The latter have a finite continuum limit; they are well-
defined functions of the external momenta, g, � and a renormalization scale � that
is introduced when defining the finite-part of correlation functions. One could say
that the divergences have been absorbed into the bare parameters. The latter can
be adjusted as a function of the lattice spacing in such a way that g, � and � stay
constant as a! 0. The bare coupling g0 can then be expressed as a function of a�
and a renormalized coupling g. For instance, a renormalized coupling based on the
static force may be introduced by setting

F.R/ D CFg
2.R/

4�R2
(defines g.R/): (1.94)

The perturbative result (1.89) then shows that

g2.r/ D g20 C
11N

24�2
g40 log.Nr=a/CO.g60/; Nr � r exp.c/: (1.95)

In the presence of fermions, the coefficient of the beta function is modified,

b0 D 11N � 2Nf

48�2
: (1.96)

Thus asymptotic freedom remains a property of the theory as long as Nf <
11
2
N .

In addition to g0 and �0, the fermion masses need to be renormalized. While in the
continuum theory, chiral symmetry prevents the appearance of an additive correction
to the masses, the explicit breaking of chiral symmetry by the Wilson action (see
Sect. 1.5.2) means that a tuning of the bare mass m0 to a ‘critical’ value mc is
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necessary in order to reach the point where the renormalized quark massm vanishes.
One writes

m D Zm.m0 �mc/: (1.97)

In the statistical-mechanics language, g0 D 0 corresponds to a free-field theory
and the critical point is thus a Gaussian one. However, the quantities that are
of interest from the quantum field theory point of view are typically ratios of
correlation lengths corresponding (at the non-perturbative level) to ratios of hadron
masses.

1.3.3 The Continuum Limit and Universality

We have so far looked at a specific discretization of the continuum action, the Wilson
action. There is a degree of arbitrariness in the choice of the discretization. However,
the continuum limit is universal, as implied by the theory of critical phenomena.
Ratios of correlation lengths associated with source fields of different quantum
numbers do not depend on the details of the action. Only the list of long-wavelength
modes, the dimensionality of space and the symmetries of the action matter.

As far as the quantum field theory is concerned, the property of universality
implies in particular that if physical renormalization conditions are imposed (e.g.
a momentum-subtraction scheme, or the renormalized coupling defined from the
static NQQ force), the results will be exactly the same as if dimensional regu-
larization had been used. If a renormalization scheme is used which is tied up
with the regularization (such as minimal subtraction), the results differ by a finite
renormalization of the parameters (g; Nm;�) and the fields. We refer the reader to
[17] for an in-depth discussion of renormalization.

In practical calculations it is important to know at what rate the continuum limit
is approached. An important framework to analyze this question was developed by
Symanzik [18]. The idea is to write down an effective (continuum) theory for the
long-wavelength6 degrees of freedom of the lattice fields. The effective theory is
non-renormalizable, but comes with a clear power-counting scheme. The lowest-
order Lagrangian, if all goes according to plan, is the continuum QCD Lagrangian.
All higher-dimensional operators consistent with the symmetries of the lattice
action contribute, however their coefficients are suppressed by powers of the lattice
spacing. The discussion is thus analogous to the low-energy description of beyond
the Standard Model physics if one identifies a�1 with the scale of ‘new physics’.
One unusual aspect is that here not only Lorentz-scalar operators can appear, due to
the breaking of Lorentz symmetry by the lattice regulator.

6Compared to the lattice spacing.
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In the language of the Symanzik effective field theory, the dimension-three
operator N  must be included with a coefficient of order 1=a for the case of the
Wilson action. This statement is equivalent to the additive renormalization of the
quark mass in Eq. (1.97). However, direct inspection of the symmetries shows that
no other operators of dimension d < 5 appear that are not already included in the
naive continuum limit of the Wilson action. This is the real reason why Wilson
lattice QCD is a valid regularization of QCD. The discretization of the continuum
QCD action in a classical way was, in retrospect, only a useful guide. However,
this procedure did allow for the setup of the perturbative expansion in a relatively
standard way.7

From a practical point of view, the most important prediction of Symanzik’s
analysis applied to the Wilson action is that the continuum limit is approached
asymptotically with a correction term of O(a) multiplying a power series in log.a/.
In the pure gauge theory, the corrections are of order a2. It should be emphasized
that the approach to the continuum is predictable because of asymptotic freedom.
Since the continuum limit is at g0 D 0, the scaling dimension of operators is in first
approximation equal to their naive engineering dimension.

1.3.4 Improvement

In practice, the approach to the continuum with O(a) corrections can lead to large
systematic uncertainties on the final results, since it is computationally very costly
to reduce the lattice spacing. Therefore, a strategy has been developed to accelerate
the approach to the continuum [20, 21].

One way to formulate the problem is the following. One wants to tune the
coefficients of certain operators in the lattice theory such that in the action of the
Symanzik effective theory, the coefficients of the dimension-five operators vanish.
This condition guarantees for instance that the spectrum (masses and dispersion
relations of hadrons) approaches its continuum limit with O.a2/ corrections (up to
logarithms).

The symmetries of continuum QCD and the equations of motion can be used to
reduce the list of dimension-five operators in the Symanzik effective theory. Then
these operators are carried over in ‘discretized’ form to the lattice theory. It turns out
that, apart from a rescaling of the gauge action and the quark mass term, the only
new term appearing is the ‘Pauli’ or ‘clover’ term,

S ! S C i

4
cswa

5
X
x

N .x/
�� OG�� .x/: (1.98)

7Recently, the use of a gauge action with no obvious classical continuum limit, but respecting the
same symmetries as the Wilson gauge action has been studied [19].
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Here 
�� D i
2
Œ��; ��� and OG�� is a lattice-site centered discretization [20] of the

field strength tensor G�� . A condition to determine the value of the coefficient csw

that will eliminate the O(a) effects is provided by requiring that the PCAC relation
(see Sect. 1.5.1.1) be satisfied under different kinematic conditions [22]. In imposing
the condition, one must take into account that also composite operators such as the
axial current receive improvement terms.

1.4 Observables

In order to illustrate the way lattice QCD is used, we describe three types of
observables: the Wilson loop, the hadron spectrum and the chiral condensate.

1.4.1 The Wilson Loop and Its Interpretation

Apart from local operators, extended gauge-invariant operators such as

Or .x/ D NQ.x/L1.x; r/Q0.x C re1/; (1.99)

QOr .x/ D NQ0.x C re1/L1.x; r/�1Q.x/; (1.100)

can be used to probe mesons with different quantum numbers. Here Q and Q0 are
meant to represent different quark flavors. It is interesting to consider the two-point
function h QOr .x C te0/Or .x/i in the limit where the quark mass goes to infinity.

For a large quark mass, the quark propagator in a given background gauge field
can be expanded in a geometric series,

.Dw Cm/�1 D 1

m

1X
nD0

��Dw

m

�n
: (1.101)

Since Dw only couples nearest neighbours, .Dn
w /.x/ vanishes for 1

a

P3
�D0 jx�j >

n if  .x/ D uı0;x is a source field located at the origin, u being a 12-component
colored spinor. For x D .x0; 0/ with x0 > 0, the leading contribution

..Dw Cm/�1 /.x/ D exp.�x0 log.am//

2m
L0.0; x0/ .1C �0/ u (1.102)

� .1C O..am/�2//

is determined by the Wilson line joining the origin to x.
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Thus, if we perform the Wick contractions for the correlator hOr .x/ QOr .0/i, we
obtain a Wilson loop,

h QOr .x C te0/Or .x/i D c exp.�2x0 log.am// Tr fW01.x; r; t/g (1.103)

� exp.�tV.r//;

with c a constant. Writing the expectation value of the Wilson loop as the two-point
function of NQQ operators with static quarks separated by a distance r suggests
the interpretation anticipated in Eq. (1.88), namely, that it falls off exponentially in
Euclidean time, with an exponent given by the meson energy. The latter consists of
the (divergent) quark self-energies and the r-dependent interaction energy, or ‘static
potential’. The quark self-energies drop out in the force F.r/ D � @V

@r
. The latter is

often used in practice as a way of ‘setting the scale’, most commonly by defining
the reference length r0 through the condition r20F.r0/ D 1:65 [23]. The physical
value of r0 is about 0.50 fm [24].

1.4.1.1 The Strong-Coupling Expansion

The Wilson loop was originally proposed as an order parameter for the confinement
of quarks [1]. If all quarks are made very massive, the potential energy between
any two quarks has either an area law, hW0k.0; r; t/i � exp.�
rt/i, or a perimeter
law, hW0k.0; r; t/i � exp.�m.r C t//i. According to the interpretation derived
in Sect. 1.4.1, the two cases distinguish respectively between the static force F.r/
going to a non-vanishing or vanishing value at long distances.

The strong-coupling expansion is, in a sense, particularly natural on the lattice,
and simpler than the weak-coupling expansion. In this context it is customary to
introduce the parameter

u � 1

g20
(1.104)

and to expand the partition functions and observables in powers of ˇ. The Haar
measure plays a central role. Consider a single link variable U . The only non-
vanishing integrals of a monomial in components of U and U � up to order 2
included are

Z
dU D 1;

Z
dU UijU

�
lk D

1

N
ıilıjk: (1.105)

In addition, there is the ‘baryon-like’ contribution

Z
dU Ui1j1 : : : UiN jN D

1

N
�i1:::iN �j1:::jN : (1.106)
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To compute the partition function

Zu D
Z

DU exp
�

u
X
x;�;�

Tr fP��.x/g
�
; (1.107)

we write

exp
�

u
X
x;�;�

Tr fP��.x/g
�
D
Y
p

exp.uTr fPpg/ (1.108)

D
X
fnpg

u
P
p np

Y
p

1

npŠ
Tr fPpgnp ;

wherep � .x; �; �/ is the label of an oriented plaquette. Diagrammatically, in order
to compute the order un we must lay down n tiles on the cubic faces of the lattice.

Consider then the expectation of a Wilson loop,

hW0k.0; r; t/i D 1

Zu

Z
DU W0k.0; r; t/ exp

�
u
X
x;�;�

Tr fP��.x/g
�
: (1.109)

The Wilson loop contains at most a single power of any link variable. In view of
Eq. (1.105), each link variable must be ‘saturated’ by a corresponding factor of the
link variable coming from the expansion of the exponential. Let A D rt=a2. The
first non-trivial contribution appears at order uA and comes when the entire surface
of the Wilson loop is ‘tiled’ with plaquettes from the action. The integral then gives

hW0k.0; r; t/i � uA: (1.110)

Thus we have obtained an area law with

a2
 D � log u; u! 0: (1.111)

Similarly, the mass gap mG of the pure gauge theory (corresponding to a
‘glueball’) can be computed by considering the plaquette-plaquette correlator,P3

i;jD1hPii.t; 0/Pjj.0/i � exp.�mGt/. The result is in leading order

amG D �4 log u; u! 0: (1.112)

The reader is invited to consult [3] for a systematic discussion of the strong-coupling
expansion.
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1.4.1.2 Quark Confinement

That the theory exhibits linear confinement in the strong coupling regime g20 	 1

does not mean that this feature is present near the continuum limit (g20 
 1). As
a case in point, the ‘compact’ formulation of U(1) gauge theory admits a phase
transition at a bare coupling of order unity, beyond which the static potential is
of the Coulomb type. All numerical evidence points to a finite string tension 

in the continuum limit of SU(N � 2) gauge theory; see for instance [25, 26].
Quite a bit can be inferred, however, by assuming that the linear potential survives
the continuum limit, and that the relevant effective degrees of freedom of a large
Wilson loop are the two transverse fluctuations of a two-dimensional sheet in four
dimensions [27, 28]. An effective bosonic string theory has been developed based
on this picture, yielding an expansion of the static potential in powers of 1=r ,

V.r/ D �C 
r � �

12r
C : : : (1.113)

The effective string theory makes even stronger predictions for the corrections
to the linear potential at large r ; see [29] and references therein. These sharp
predictions still remain to be fully tested by numerical simulations, but there is
good numerical evidence that the static potential follows the prediction (1.113).
Moreover, the spectrum predicted by the Nambu-Goto string action provides an
excellent description of the low-lying (closed-string) states [30].

1.4.2 Hadron Spectroscopy

Here we will adopt a continuum notation and consider that we are in the infinite-
volume, continuum Euclidean theory. The main purpose of this section is to
show that the spectrum of stable hadrons can be extracted from the long-distance
behavior of Euclidean correlation functions. An explicit analytic continuation of the
correlation functions to Minkowski space is not required.

For concreteness we will consider the simplest case of the pion. From Eq. (1.18),
we saw that the energy of a scalar particle could be read off from the large Euclidean
time of the propagator in the time-momentum representation. The form of the
free-field propagator, however, generalizes to (even non-perturbatively) interacting
field theories via the Källen-Lehmann spectral representation. The Heisenberg
representation, continued to Euclidean time, reads

O�.x/ D eH jx0j�iP �x O�.0/ e�H jx0jCiP �x (1.114)

Suppose we use as an interpolating operator O�.x/ D Nd�5u and write

h0j O�.x/jpi Dp�� e�Ep jx0jCip�x: (1.115)
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Then define

G.x0;p/ �
Z
d3x e�ip�xh0j O�.x/ O�.0/j0i D

Z
d3x e�ip�x h�.x/�.0/i:

(1.116)

Inserting a complete set of states of total momentum p, and taking into account the
fact that the next states above the pion form a continuum of three-pion states,8

1 D
Z

d3p

.2�/32Ep

jpihpj C (projector onto states of energy> 3m� ): (1.117)

we have

G.x0;p/
jx0j!1D ��

eEp jx0j

2Ep

C O.e�3m� jx0j/: (1.118)

A typical operator that couples to the nucleon is (here C D �0�2)
�˛.x/ D �abc.u

a>C�5db/ua˛.x/: (1.119)

However, often operators are used that do not transform as a Dirac spinor under
boosts. In that case the other symmetries can still be used to constrain the possible
form of the two-point function. One can decompose

C2.x0;p/˛ˇ �
Z
d3x e�ip�xh�˛.x/ N�ˇ.0/i (1.120)

D .CC
2 .x0;p/C C�

2 .x0;p//˛ˇ; (1.121)

with

CC
2 .x0;p/ � 1

2
.1C �0/C2.x0;p/ (1.122)

D 1
2
.1C �0/

�
F.x0;p2/ � i G.x0;p2/ p � �

�
;

C�
2 .x0;p/ � 1

2
.1 � �0/C2.x0;p/ (1.123)

D 1
2
.1 � �0/

�
F.�x0;p2/� i G.x0;p2/ p � �

�
:

Charge conjugation implies that G is even in x0. Spectral positivity implies that
�0C2 is a Hermitian, positive-definite matrix. Thus, the functions F and G are real
and must satisfy

�F.x0;p2/ F.�x0;p2/ � p2G.x0;p2/2; (1.124)

sign.x0/ .F.x0;p2/� F.�x0;p2// � 0: (1.125)

8One-particle states are normalized according to hp0jpi D .2�/32Epı.p � p0/.
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At zero momentum, CC
2 .x0; 0/ receives contributions only from positive-parity

baryons, while C�
2 .x0; 0/ only couples to negative-parity baryons (see the transfor-

mation of spinors under parity, Eq. (1.24)). Thus, one may extract the proton mass
mp from the long-distance part of the projected correlator

Tr fCC
2 .x0; 0/g � j�pj2 exp.�mpx0/; x0 !C1; (1.126)

where the trace acts on the spin indices. Many more aspects of spectroscopy
calculations are covered in chapter “Lattice Methods for Hadron Spectroscopy”.

1.4.3 Spontaneous Chiral Symmetry Breaking and
Low-Energy Constants

In view of the special role of the pions in QCD as pseudo-Goldstone bosons
associated with the spontaneous breaking of chiral symmetry, both their masses and
couplings to the axial current are of interest. Consider the case where two degenerate
quark flavors, up and down, are very light and let  D .u; d />. Current-algebra
relations imply the Gell-Mann–Oakes–Renner (GMOR) relation

F 2
�m

2
�

m!0D 2m˙; ˙ D �1
2

lim
m!0

lim
V!0
h N  i; (1.127)

giving the leading-order dependence of the pion mass in terms of the quark mass.
The pion decay constant F� is defined by (the axial current Aa� is defined in
Eq. (1.143) below)

h0jAa�.0/j�bi D ip� ı
abF�; (1.128)

and its value (92.2 MeV) is extracted from the weak decay �� ! �� N��. In lattice
QCD it can be extracted for instance from the two-point function

Z
d3x hAa0.x/Ab0.0/i jx0j!1D ıab

2
F 2
�m� exp.�m� jx0j/: (1.129)

The GMOR relation (1.127) can be used to estimate the chiral condensate ˙ ,
knowing m� and F� for a range of small quark masses. However, the condensate
can also be extracted in an independent way. Consider the average spectral density
of the Dirac operator,

�.�;m/ D 1

V

1X
kD1
hı.� � �k/i: (1.130)
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The Banks-Casher relation [31] gives the condensate as the density of modes of the
Dirac operator around the origin in the chiral limit,

lim
�!0

lim
m!0

lim
V!1 �.�;m/ D ˙

�
: (1.131)

This relation has been used as a way to compute the chiral condensate in the chiral
limit [32]. Other methods exist as well,9 and a recent average given by the FLAG2
report [34] is

˙1=3 D 270.7/MeV (1.132)

in QCD with two flavors. The GMOR relation is found to be a good approximation
well beyond the physical values of the light-quark masses. The level of accuracy
reached in lattice calculations is however such that low-energy constants that appear
at higher orders in chiral perturbation theory are being determined with competitive
accuracy [34].

1.5 Theory Topics for the Lattice Practitioner

We give an introduction to a few theory topics which are, on one hand, of general
interest for aspiring quantum field theorists, and which on the other hand have
proved important in practical lattice calculations.

1.5.1 Ward Identities

Suppose that the Euclidean action SŒ ; N ;U � is invariant under a global transforma-
tion of the fields. Promoting the transformation to a local one generates interesting
relations among correlation functions. As an example in lattice QCD with the
Wilson action, consider then the local transformation

 0.x/ D ei˛.x/ .x/; N 0.x/ D N .x/e�i˛.x/: (1.133)

One finds, for an infinitesimal transformation,

SŒ 0; N 0; U � D SŒ ; N ;U �C ıSŒ ; N ;U �; (1.134)

9At the time of writing, the Yang-Mills gradient flow provides probably the most efficient way to
compute the chiral condensate with precision [33].
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ıSŒ ; N ;U � D i a4
X
x

@�˛.x/J�.x/C O.˛2/; (1.135)

with

J�.x/ D 1
2

� N .x C a O�/.1C ��/U 
�.x/ .x/ (1.136)

� N .x/.1 � ��/U�.x/ .x C a O�/
�
;

while the integration measure is left invariant. If O is an observable which
transforms according to

OŒ 0; N 0; U � D OŒ ; N ;U �C ıOŒ ; N ;U �C O.˛2/; (1.137)

then

hOi D
Z

DUD 0D N 0 OŒ 0; N 0; U � exp.�SŒ 0; N 0; U �/ (1.138)

D
Z

DU D 0D N 0„ ƒ‚ …
DD D N 

.OŒ ; N ;U �C ıOŒ ; N ;U �/ (1.139)

exp.�SŒ ; N ;U � � ıSŒ ; N ;U �/
D hOi C hıO �OıSi C O.˛2/:

We conclude

hıOi D hOıSi: (1.140)

For instance, for O D J�.y/, we have ıO D �ia@�˛.y/S.�/.y/,

S.�/.y/ D 1
2

� N .y C a O�/.1C ��/U�.y/�1 .y/ (1.141)

C N .y/.1 � ��/U�.y/ .y C a�/
�
:

It can be thought of as a point-split discretization of the continuum scalar operator
N  . Now choosing ˛.x/ D � eikx, we finally obtain the relation [35]

a4
X
x;�

Ok�
D
J�.y/J�.x/

E
eik.x�yC a

2 O�� a
2 O�/ D �a Ok� hS.�/.y/i: (1.142)

This relation tells us that the longitudinal part of the polarization tensor is a pure
contact term, and specifies the latter for the present regularization of QCD.
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1.5.1.1 Chiral Ward Identities

The consequences of the global continuous symmetries of QCD can be elegantly
worked out as Ward identities in the continuum Euclidean path integral (cf. [21],
Sec. 4); the results are equivalent to those derived in the algebra of currents acting
on the Hilbert space of the quantum states.

Perhaps the most important use of Ward identities in lattice QCD is to impose
renormalization and/or improvement conditions on composite operators. The Ward
identities can be derived in the continuum theory, and as long as on-shell correlation
functions10 are considered, they can be imposed in the lattice theory, thus providing
renormalization conditions for certain local operators.

As an important example, consider QCD with a doublet of degenerate quark
flavors, represented by a field  .x/ D .u.x/; d.x//> (there may be more flavors in
addition). The isovector axial current and pseudoscalar density read

Aa�.x/ D N ���5
�a

2
 .x/; P a.x/ D N .x/�5 �

a

2
 .x/; (1.143)

where �a are the Pauli matrices acting in flavor space. For instance, the identity of
the partially conserved axial current (PCAC) for QCD with a doublet of degenerate
quark flavors

@�A
a
�.x/ D 2mPa.x/; (1.144)

valid in all on-shell correlation functions, is used to define the quark mass m in
Wilson lattice QCD, as well as to determine the finite renormalization of the axial
current [21, 36, 37]. Equation (1.144) also shows that the renormalization of the
quark mass m is known once the axial current and the pseudoscalar density are
renormalized, see [38].

Similar to the axial current, the energy-momentum tensor requires a finite
renormalization in order to satisfy the Ward identities of translation invariance.
See e.g. [39] for the use of continuum Ward identities to renormalize the energy-
momentum tensor in lattice field theory.

1.5.2 Chiral Symmetry on the Lattice

One drawback of the Wilson-Dirac operator (1.63) is that it does not preserve
chiral symmetry: in the massless continuum theory, the action is invariant under
the variation

ı .x/ D �5 .x/; ı N .x/ D N .x/�5 (1.145)

10By ‘on-shell correlation function’, we mean that all operators involved are located at a physical
distance from each other. By focusing on these, we avoid the discussion of contact terms, which in
general are regularization-dependent.
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of the fields. This property follows from the fact that, at vanishing quark mass,
the Dirac operator anticommutes with �5. The Laplacian term in the Wilson-Dirac
operator clearly spoils this property.

This is no coincidence, as the Nielsen-Ninomiya theorem [40–42] implies that
chiral symmetry cannot be realized in this form on the lattice. We give here a partic-
ularly simple version of the theorem quoted in [43]. If S D a4

P
x
N .x/D .x/ is

the free-fermion action, andDeipxu D QD.p/eipxu for u a constant spinor and QD.p/ a
4�4matrix, then the following four properties cannot be realized simultaneously:

i. QD.p/ is analytic and periodic in p� with a period 2�=a;
ii. QD.p/ D i��p� C O.ap2/ at small momenta;

iii. QD.p/ is invertible at all momenta that are non-vanishing mod 2�=a;
iv. D anticommutes with �5.

As an example in one dimension, consider the case QD.p/ D 1
a
�1 sin.p1a/. It

satisfies the one-dimensional analogue of the conditions (i), (ii) and (iv) above, but
violates (iii). The presence of a second zero of QD.p/ within the Brillouin zone at
p1 D �=a is a consequence of the existence of a zero at the origin, and that by
periodicity it must cross zero again with the same slope at p1 D 2�=a [44].

However one can show that a modified ‘chiral’ transformation [43],

ı .x/ D �5.1 � 1
2
aD/ .x/; ı N .x/ D N .x/.1 � 1

2
aD/�5; (1.146)

is indeed a symmetry of the action if the following ‘Ginsparg-Wilson’ relation [45]
is satisfied by the Dirac operator,

�5D CD�5 D aD�5D: (1.147)

In term of the propagator, this relation reads

h .x/ N .y/i �5 C �5 h .x/ N .y/i D a�3�5ıx;y; (1.148)

which shows that the ordinary chiral symmetry is realized on the mass shell. An
explicit lattice Dirac operator that satisfies Eq. (1.147) is the ‘overlap’ operator [46]

D D 1

a
.1 �A.AA/�1=2/; A D 1 � aDw: (1.149)

It also satisfies the conditions (i), (ii) and (iii) above. The analyticity of QD.p/ for
real momenta implies the locality of D on a range of the order a.

The realization of a form of chiral symmetry on the lattice has important
consequences. In particular, relation (1.147) implies that the ‘topological charge’
Q defined as

Q D a4
X
x

q.x/; q.x/ � �a
2

Tr f�5D.x; x/g; (1.150)
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is equal to the index Tr f�5P0g of the Dirac operator [47], where P0 is the projector
onto the subspace of its zero modes.

We refer the reader to Sec. 5 of [48] and to [49, 50] for accessible and more
complete introductions to the subject of chiral symmetry and lattice fermions. In
particular, lattice domain wall fermions [51–53] are a widely used formulation of
chiral fermions.

1.5.3 Topology of the Gauge Field

Let D be a Dirac operator obeying the Ginsparg-Wilson relation (1.147). Then
Q provides a definition of the topological charge obeying the index theorem. Its
cumulants can be rewritten in such a way that, by power counting, no short-distance
singularities appear. A universal (i.e. regularization-independent) definition of the
cumulants of the topological charge can then be given [54]. In particular, the
topological susceptibility �t can be written

�t � 1

V
hQ2i D m1 : : : m5

Z
d4x1 : : : d

4x4 (1.151)

D
P31.x1/S12.x2/S23.x3/P54.x4/S45.0/

E
conn

with Prs.x/ D N r.x/�5 s.x/, Srs.x/ D N r.x/ s.x/ respectively the pseudoscalar
and scalar density with respect to quark flavors r and s.

Direct calculations of the topological susceptibility based on the overlap Dirac
operator (see Eq. (1.150)) have been performed in SU(3) gauge theory; as an
example, we quote [55]

r40�t D 0:059˙ 0:003: (1.152)

(the reference length r0 was defined at the end of Sect. 1.4.1). Other ways of
estimating �t motivated by semi-classical arguments yield comparable results (see,
for instance, [56, 57]).

1.5.4 Recursive Finite-Size Technique: Linking Vastly
Different Length Scales

Consider a renormalized coupling g2.�/. We saw an example defined via the force
between two static quarks, Eq. (1.95), where � D 1=r . At standard simulation
parameters, the smallest lattice spacing for which a linear system size of several
fm can be accomodated is about 0.05 fm. However, in order to make contact
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with perturbation theory in a completely controlled way, it is desirable to compute
the renormalized coupling at distances as small as 0:002 fm. It is clear that the
large hierarchy between the distances typical of non-perturbative physics and the
regime where perturbation theory becomes quantitatively accurate requires a special
treatment.

Probably the only strategy that addresses this issue in a completely satisfactory
way is the ‘recursive finite-size technique’ or ‘step-scaling’. The general idea is
that the inverse size of the system 1=L itself plays the role of the renormalization
scale �. This means that the confinement scale � 0:5 fm need not be accomodated
in a calculation of the renormalized coupling at a large renormalization scale. A
second key point is that attention must be paid to avoid zero modes of the quark and
the gluon fields in the perturbative regime. The latter can cause serious problems
with the stability and ergodicity of simulations. One set of boundary conditions that
removes all zero modes is the set implemented in the Schrödinger functional [58].
There may well be other useful choices [59]. The Schrödinger functional has been
used extensively to compute the running coupling [60–63] and has also proved very
useful in formulating renormalization conditions for various local operators; see, for
instance, [38, 64].

The idea of relating a quantity at high energy scales to the same quantity at small
energy scales in multiple manageable steps in order to avoid a large hierarchy of
scales is also used in other contexts. One of them is the calculation of the QCD
equation of state at high temperatures [65, 66].

1.6 Importance Sampling Monte-Carlo Methods: Basic Ideas

In this section we describe the ideas behind the numerical methods that are used in
practical calculations. First consider, for concreteness, the case of the pure gauge
theory, Eq. (1.66). The first idea is to interpret

pŒU � D 1

Z
DŒU � exp.�SgŒU �/ (1.153)

as a normalized probability distribution on the space of all gauge fields. The second
idea is to generate a representative sample of field ‘configurations’ fU1; : : : ; UNc g,
meaning that the fraction of the number of configurations belonging to a domain D
of field space is given by

Z
D
DŒU �pŒU �;
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with an error of order N�1=2
c . Third, the path-integral expectation value of observ-

ables can be estimated according to

hOŒU �i D 1

Nc

NcX
iD1

OŒUi �C O.N�1=2
c /: (1.154)

One thus needs a method of generating the probability distribution (1.153). Usually,
a complicated probability distribution must be generated iteratively; a Markov
chain is a general method that achieves this. The chain starts from an initial
configuration and then visits a sequence of configurations according to a given
transition probability. General criteria exist that guarantee that the configurations
visited after a sufficient number of iterations are indeed distributed according to
the desired probability distribution [67]. For the state-of-the-art update rule, see, for
instance, Sec. 2.3 of [67] and Appendix B of [68] and references therein.

The way fermions are treated in virtually all current lattice calculations is by
integrating them out, yielding the determinant of the Dirac operator in the numerator
of the path integral (see Eqs. (1.32–1.33)). The determinant can be treated as
part of the probability distribution pŒU �, provided it is positive on all gauge-field
configurations. The �5 hermiticity of the Dirac operator implies that the determinant
is real. For a doublet of mass-degenerate quarks, the square of the determinant
is thus positive. For the other quark flavors, chiral symmetry, if realized on the
lattice, guarantees that the determinant is positive; for non-chiral discretizations,
the eigenvalues appear to all be positive with a substantial spectral gap, so that the
property holds in practice.

The state-of-the-art algorithm to generate the distribution of gauge fields includ-
ing the effect of the quarks is the hybrid Monte-Carlo algorithm [69], with its many
important refinements of the last decade or so [67, 70, 71]. The generated sample of
gauge-field configurations (an ‘ensemble’) is stored on disk, so that observables can
be calculated on the configurations at a later stage. As an example, the two-point
function of quark bilinears O.x/ D Nu.x/� u.x/, O0.x/ D Nu.x/� 0u.x/ (with �; � 0
matrices acting on the spin degrees of freedom) are evaluated as

hO.x/ O0.y/i D 1

N

NcX
iD1

�
� Tr

˚
�D�1.ŒUi �I x; y/� 0D�1.ŒUi �Iy; x/

�
(1.155)

CTr
˚
�D�1.ŒUi �I x; x/g Trf� 0D�1.ŒUi �Iy; y/

��C O.N�1=2
c /;

where D is the lattice Dirac operator in a given gauge field and the traces are taken
with respect to color and spin indices.
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1.7 Outlook

I hope that the introduction given here provides a useful overview of the most
important concepts and methods in lattice QCD. It is a theoretically sound quantum
field theoretic framework, and, with the steady increase in computing power and the
improvement of algorithms, it makes predictions that have a high phenomenological
impact [34, 72]. It has also had an influence on the way other problems are
approached, for instance in the simulation of theories that may represent strongly
coupled extensions of the Standard Model [73] and, more distantly, in theories
describing a gas of strongly interacting fermions [74–76]. The following chapters
give a far more detailed account of nuclear physics applications of lattice QCD.



Chapter 2
Lattice Methods for Hadron Spectroscopy

Sinéad M. Ryan

Abstract Lattice hadron spectroscopy is crucial to inform and direct a new
generation of experiments. Useful calculations require control of both statistical
and systematic uncertainties. In these lectures selected methods for lattice hadron
spectroscopy are discussed in detail. The lectures aim to describe all aspects of
a calculation from quark propagation to fitting and interpreting data. After some
motivation for lattice spectroscopy, the path integral approach and construction of
correlation functions are discussed. There are detailed discussions of techniques
for quark propagators, including new developments in calculations of all-to-all
propagators. Lattice and continuum symmetries are contrasted and techniques for
spin identification in lattice calculations are discussed in some detail. Design
and construction of optimal operators as well as fitting and systematic errors
are addressed. Finally, open problems and challenges are described focusing on
resonances and scattering states.

2.1 Introduction

The nonperturbative spectrum of mesons and baryons built from light and heavy
quarks provides a fascinating arena in which to study the strong interaction. Indeed
many of the most recently discovered hadrons have unexpected properties and their
discovery has reignited theoretical and phenomenological interest in spectroscopy.
Within the Standard Model (SM), to separate electroweak physics from strong-
interaction effects we must first understand the hadon spectrum. Meanwhile beyond
the SM, models of electroweak symmetry breaking, such as technicolour, may
require nonperturbative techniques at the TeV scale which are similar to the
techniques developed for spectroscopy at GeV scales. To understand therefore the
new puzzling states which have been observed and to probe the physics at LHC
energies better techniques for spectroscopy will be crucial and will help us to
understand the nature of masses and transitions.
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While the quark model has provided a useful framework in which to understand
the structure of mesons and baryons it is limited to just a subset of the states
which QCD in principle allows. Lattice QCD offers the prospect of nonperturbative,
systematically-improvable model-independent calculations of hadron masses and
mixing (as well of course as a wealth of other properties of QCD). In these lectures
we will review some approaches and discuss new methods to address the significant
challenges which remain in the era of dynamical calculations at realistic quark
masses.

2.1.1 Notation and Basics

The objects of interest are formed from constituent quarks and antiquarks to make
bound states of mesons and baryons as well as molecular and multiquark states,
hybrid states and glueballs. In QCD the fundamental constituents are the quarks (in
six flavours) and gluons. The fields of the lagrangian are combined in colourless
combinations forming bound states.

The quark model is a useful classification of hadrons in terms of their valence
quarks—the quarks (q) and antiquarks ( Nq) that give the quantum numbers of the
hadrons. States in the continuum are classified by the quantum numbers: J , the total
angular momentum; P , the parity and C , charge conjugation. Recall that jL�S j �
J � jLCS j and in the quark model naming scheme, n2SC1LJ , the values of L are
L D f0; 1; : : :g and S D f0; 1g. The parity is defined by P D .�1/.LC1/ and charge
conjugation is C D .�1/.LCS/. The latter is a good quantum number for q Nq states
with the same quark and antiquark flavour e.g. charmonium but not for example for
heavy-light mesons, D.s/; B.s/, nor for baryons.

2.1.1.1 Mesons

Mesonic states are composed of two spin-half fermions, and described by 2SC1LJ
in quark model notation with S D 0 for antiparallel quark spins and S D 1 when
the quark spins are parallel.

States in the quark model follow a “natural spin-parity” series with P D .�1/J
and so have S D 1 and thus CP D C1. With these conditions, the allowed states
have J PC D 0�C; 0CC; 1��; 1C�; 2��; 2�C; : : :. However, states with P D .�1/J
but CP D �1 are forbidden in a q Nq model of mesons, meaning that the states
J PC D 0C�; 0��; 1�C; 2C�; 3�C; .even/C�; .odd/�C; : : : which are allowed by
QCD cannot be accommodated in a simple quark model picture and must therefore
be more than a simple bound state of a quark and antiquark. These are the “exotic”
states of QCD.
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2.1.1.2 Baryons

In this case there are three quarks in colourless combination (with baryon number
B D 1), J is half-integer and in particular C is not a good quantum number so
that states are classified by JP . The spin-statistics theorem tells us that a baryon
wavefunction must be antisymmetric under the exchange of any two quarks. Since
all hadrons are colour neutral, the combinations of colour indices of the three quarks
must be antisymmetric and the remaining labels: flavour, spin and spatial structure
must be in totally symmetric combinations,

jqqqiA D jcolouriA ˝ jspace; spin;flavouriS : (2.1)

The possible states are then

jqqqiA D jcolouriA ˝ ŒjspaceiS ˝ jspiniA ˝ jflavouriA�S
ŒjspaceiS ˝ jspiniS ˝ jflavouriS �S

(2.2)

and a linear combination

jqqqiA D ˛jcolouriA ˝ ŒjspaceiS ˝ jspiniA ˝ jflavouriA�S
CˇjcolouriA ˝ ŒjspaceiS ˝ jspiniS ˝ jflavouriS �S :

with ˛2Cˇ2 D 1. An outstanding question in baryon spectroscopy is that of missing
states. For three quarks .u; d; s/ there is an (approximate) SU.3/ flavour symmetry
and a decomposition in flavour given by

3˝ 3˝ 3 D 10S ˚ 8M ˚ 8M ˚ 1A; (2.3)

where A is antisymmetric, S is symmetric and M is mixed. The decuplet is
symmetric in flavour and the two octets have a mixed symmetry and since they are
related by a unitary transformation describe the same states. This analysis predicts
many more states than observed by experiments, a phenomenon known as the
missing resonance problem.

2.1.1.3 Gluonic Excitations: Hybrids and Glueballs

In addition to the mesons and baryons discussed above in terms of quark degrees
of freedom, QCD allows for a richer spectrum of states when we take into account
the gluonic degrees of freedom. We can formulate color-neutral states of pure glue,
called glueballs and states in which excitations of the gluonic field in a hadron form
so-called hybrids.
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Theoretical discussions of glueballs focus on states made from two or three
gluons and as for the conventional mesons and baryons these states are color neutral
and have integer angular momentum. The two-gluon states will have J D 0 (scalar
or pseudo-scalar) or J D 2 (tensor). Three-gluon states can have J D 1 (vector) or
J D 3.

Glueballs will mix with ordinary mesons and are therefore difficult to identify
unambiguously in experiments. There is a considerable history of lattice calcula-
tions of glueballs. A pioneering quenched calculation mapped the spectrum of states
in great detail [77]. However, unquenched calculations must also take into account
the allowed mixing with ordinary mesons and are consequently more technically
challenging. See for example [78] and references therein.

2.1.2 Current and Future Experiments

Before we delve into the details of lattice hadron spectrum calculations it is
worthwhile to review briefly some of the experimental activity underway. There
is significant new effort being devoted to understanding the light and charm spectra
and to answering the questions:

1. Are there resonances that do not fit the quark model?
2. Are there gluonic excitations in these spectra?
3. What structure does confinement lead to?

2.1.2.1 Current Status

Since the early 2000s there has been a renaissance in charmonium spectroscopy.
The unexpected discovery of new narrow structures above the open charm threshold
by Belle and Babar led to substantial renewed interest in what was believed to
be a well-understood sector. There has been much speculation about the nature
of the so-called “X,Y,Z” states including possible molecular and hybrid states.
Intriguingly the Z˙.4430/ is a charged state and so cannot be a simple c Nc meson.
However, very little is definitively known and as yet no clear picture has emerged.
BESIII continues to take data, with an aim to accumulate 108 to 109 J=� and � 0
decays. These states decay primarily by c Nc annhilation and hadronisation to light
mesons. The experiment has reported new states including the X.1835/;X.2120/
and X.2370/ [79]. However, no quantum number assignments have been made yet
and both independent confirmation and measurement of the quantum numbers is
essential.
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2.1.2.2 Planned Experiments

The GlueX experiment at the Hall D facility at JLab plans to have first physics
results in 2015. The primary goal is the search for and study of gluonic excitations in
the meson spectrum, produced in �p collisions. Photoproduction of exotic hybrids
is expected to be particularly effective, while also allowing an extensive study of
the conventional spectrum. As well as discovery, GlueX should in principle be able
to confirm the existence of new states seen at BESIII, through a complementary
production mode and in addition measure or confirm the measurement of quantum
numbers. Using their proposed kaon identification system GlueX will additionally
be able to study baryons, including excited � baryons.

The PANDA experiment at the Facility for Antiproton and Ion Research (FAIR)
which is under construction at GSI in Darmstadt will collide antiprotons with a fixed
target. The hadron spectroscopy program at PANDA includes a search for gluonic
excitations: glueballs and hybrids and charmonium spectroscopy: in particular of
states above threshold. The goal is to find the missing D and F wave states
in charmonium and to understand the nature of the X; Y;Z states. PANDA will
also study the D meson spectrum, again to address the question of unexplained
states which do not fit into the quark model picture for heavy-light systems. A
comprehensive programme of baryon spectroscopy is also planned—in particular
for strange and charmed baryons.

In principle, lattice QCD can provide a complementary approach as well
discrimating between models and providing guidance for experimental searches to
address these questions by identifying properties of states in the continuum limit
of the theory and by going beyond precision ground state spectroscopy to compute
scattering and resonance widths. To achieve this we need new tools: techniques
for statistical precision, even at high spin; methods for operator construction and
spin identification on the lattice; new methods for resonance and isoscalar physics;
control of the relevant extrapolations (mq ! mphysical; V ! 1; a ! 0). A
discussion of recent progress to address some of these issues will be the main
topic of these lectures. The topics I cover are not exhaustive but will I hope give
a flavour of the progress being made, what you might expect to see in the near
future and how to judge the relative merits of such calculations. There are many
excellent textbooks, reviews and lecture notes available including this not exhaustive
list [3, 5, 6, 21, 80–86].

2.1.3 Lattice Hadron Spectroscopy

An important goal for lattice calculations is a determination of the low-energy
spectrum of quarks and gluons from the QCD Lagrangian

LQCD D �1
4
F a
��F

a�� C
X
f

N�f
�
i��D� �mf

�
�f ; (2.4)
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where the index f represents flavour and the covariant derivativeD� is defined

D� D @� � ig

�
1

2
�a
�
Aa�: (2.5)

In such calculations there are just two input parameters, the coupling g and the bare
mass mf . The continuum theory is recovered by simulating at or extrapolating to
physical values of the light quark masses and in the limits a! 0 and V !1.

At the Lattice conference in 2011, Hoelbling [87] reviewed progress in lattice
spectroscopy, described in Fig. 2.1. The plots show that many lattice collaborations
are now making simulations with Nf � 2, at light quark masses and large volumes.
In these lectures I will not discuss fermion discretisations, chiral extrapolations or
the details of simultations at or close to the physical point. Note that recent results
for the low-lying spectrum of hadrons in the light sector show internal consistency
between different lattice fermion formulations and impressive agreement with
experimental results [88–92].
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Fig. 2.1 The landscape of recent dynamical lattice calculations, from Hoelbling’s review. The left
plot shows the lattice extent L vs the pion mass. The physical pion mass is at the dashed line and
the shading represents the relative error on the pion mass from 1 to 0.1 %. The right plot shows the
pion mass, M� vs the lattice spacing, a. The physical point is marked with a cross and the shading
from dark to light indicates the more desirable parameter space for calculations
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2.1.4 Correlators in a Euclidean Field Theory

Recall that in a Euclidean field theory, physical observables O are evaluated as an
expectation value over the relevant degrees of freedom

hOi D 1

Z

	Z
DU D� D N� O e�SQCD



: (2.6)

The quark fields are Grassmann and are integrated out analytically, giving (with
Nf D 2)

hOi D 1

Z

	Z
DU detM2O e�SG



; (2.7)

where SG is the gauge action. The expectation value is then calculated by impor-
tance sampling of gauge fields and averaging over these ensembles. Typically, in
hadron spectroscopy we are in interested in two-point correlation functions built
from interpolating operators, which are functions of the fields � . A simple example
is a local meson operator O.x/ D N�a.x/� �b.x/, where � is an element of the
Dirac algebra with possible displacements and a; b are flavour indices.

The two-point function is then

C.x; t/ D hO.x/O.0/i D h N�a.x/� �b.x/ N�b.0/� �a.0/i; (2.8)

where I note that x � .t;x/I t � 0.
Using Wick’s theorem to contract the quark fields replaces the fields with

propagators in the expression for the correlation function

C.x; t/ D �hTr
�
M�1
a .0; x/�M�1

b .x; 0/� 
�i

CıabhTr
�
�M�1

a .x; x/
�

Tr
�
� M�1

a .0; 0/
�i: (2.9)

The trace is taken over spin and colour indices, which have been suppressed here
for clarity. M�1

.a;b/ is the quark propagator.
Now, for flavour non-singlets (with a ¤ b) the second term above vanishes and

the two-point correlation function can be written

C.x; t/ D hTr
�
�5M

�1
a .x; 0/�5�M

�1
b .x; 0/� 

�i: (2.10)

To arrive at this expression we have also used �5 hermiticity, namely that
M�1.x; y/ D �5M

�1.y; x/�5, to rewrite the correlator in terms of propagators
from the origin to all sites. These are the point (to all) propagators traditionally
used in lattice calculations. In one final step we consider correlators in momentum
space at zero momentum,
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C.p; t/ D
X

x

eip�x C.x; t/ (2.11)

and C.t/ D C.p D 0; t/ D
X

x

C.x; t/:

It is useful to bear in mind from what we have seen above that the fermion fields in
the lagrangian are present in calculations of the fermion determinant and contribute
to the integral over the gauge fields, while those fermion fields in measurements are
manifest in calculations of the propagators. The integral over gauge fields is done
using importance sampling and is not the subject of these lectures. We will however
see more about techniques to determine the quark propagators.

For hadron spectroscopy the goal is to extract the energy of (colourless) states of
QCD. This information is encoded in the two-point correlation functions which are
discussed above and which I now write as

C.t/ D h�i.t/j�j .0/i; (2.12)

where, �i and �j are operators acting on the quark fields to create a state at time
t D 0 and annihilate it at a later time t . Using the Euclidean time evolution of such
operators, �.t/ D eHt�e�Ht and inserting a complete set of states allows us to write
the correlator as

C.t/ D
1X
nD0

jh�jnij2
2mn

e�Ent ; (2.13)

and note also that we are working in the low-temperature limit of QCD where
ˇ D 1=kT D Lt is large. From Eq. (2.13) it is easy to see that in the large time
limit the exponential fall-off of the correlator gives the ground state energy, E0,
namely limt!1C.t/ D Ze�E0t . The usual procedure then is to fit correlators to
an exponential and extract the ground state energy from the data at large times. A
useful quantity in this respect is the effective mass, which can be defined as

atmeffective D � log

�
C.t/

C.t � 1/
�
: (2.14)

The effective mass should plateau at large time separations as the ground state
exponential dominates in the correlator. This is illustrated in Fig. 2.2 which shows a
single correlator and corresponding effective mass for the J=� meson, determined
on a 123 � 128 anisotropic lattice. Note that for operators �i D �j in Eq. (2.12)
the correlation function is positive definite and the effective mass converges
monotonically from above.
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Fig. 2.2 The left plot is a log plot of the correlator data, which is symmetric about the midpoint
of the lattice for mesons under periodic boundary conditions. The right plot is the corresponding
effective mass, determined using Eq. (2.14). Note that the data reach a plateau and remain constant
from approximately timeslice twenty-five. At earlier times, excited state contamination in the form
of additional exponentials is clearly visible

Now, it is clear from Eq. (2.13) that the correlation function contains information
on all states that can be created by the operators used. However, the technique
described above reliably gives the ground state while excited states, which would
require more exponentials and more free parameters in a fit, very quickly become
unreliable.

A different approach, designed to allow access to these excited states in a lattice
calculation is the variational method, which I will return to in Sect. 2.4.2.3. The idea
is that if we can measure a matrix of correlation functions

Cij.t/ D h0j�i.t/�j .0/j0i; (2.15)

for all i; j and solve a generalised eigenvalue problem C.t/v D �C.t0/v, then the
eigenvalues � are related to the state energies by

lim
.t�t0/!1�k D e�Ekt CO

�
e��Ent� : (2.16)

For this method to be practical we need (i) a good basis set of operators that
resembles the states of interest and (ii) all elements of this correlation matrix
measured [93]. In Sect. 2.4 we will look in more detail at the different approaches
to operator construction which facilitate the variational approach.

2.2 Some New (and Old) Ideas for Making Measurements

To improve the precision and range of calculations that lattice methods can tackle
let us take a closer look at quark propagators: the hadronic building blocks. In the
previous section we saw that using time translational invariance and for flavour non-
singlets a so-called point-to-all propagator can be calculated. The main advantage
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of these propagators is that their calculation does not require vast computing
resources. However, this comes at a hefty cost. Using point propagators restricts
the accessible physics, making calculations of flavour singlets, where a D b in
Eq. (2.9) (e.g. the �0) and condensates impossible as these objects need propagators
with sources everywhere in space. From a practical point of view point propagators
restrict the interpolating basis used since a new inversion is needed for every
operator that is not restricted to a single lattice point. Finally, from a philosophical
point of view the point propagator entangles the propagator calculation and operator
construction in a non-trivial way.

In this section I will discuss some different approaches used to calculate quark
propagators: smeared point propagators, all-to-all propagators and distillation.
Please see the references for a fuller description of these and other methods.

2.2.1 Smearing

Recall that hadrons are extended objects O.1/ fm whilst so far we have discussed
the calculations of hadronic properties in terms of point-like propagators and
interpolating fields. These may have small overlap with the state of interest, as
determined by the amplitude Zn D h�jni appearing in Eq. (2.13). Improvements
can be made by optimising the projection onto the state of interest using “smearing”:
one uses an extended operator (for example of the form Nq.1/x � �x;yq

.2/
y ) where the

function �x;y is chosen to resemble a wavefunction. Essentially this works since the
ground state wavefunction is smooth with no nodes.

This idea has been realised using Coulomb gauge fixing [94, 95] and by using
iterative gauge-covariant smearing of the quark fields. This amounts to replacing

�.x; t/ D
X

y

G.x;y ; U.t//; �.y; t/; (2.17)

where the function G is the (Gaussian) smearing function given by G.x;y; U.t// D
.1C	sH/n
 andH is frequently the lattice covariant Laplacian in three dimensions.
Examples of iterative smearing procedures include Jacobi smearing [96] and
Wuppertal smearing [97].

In addition, the gauge noise in a Monte-Carlo calculation can be significantly
reduced by smearing the link, (U ) fields that appear in G. Again, there are different
approaches here including APE [98], HYP [99] and stout smearing [100].

Distillation [101], which will be more thoroughly discussed in Sect. 2.2.2.1 in the
context of methods for all-to-all propagators can also be thought of as a variation or
re-definition of smearing.
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2.2.2 All to All Propagators

Let us turn now to consider methods for determining the quark propagator from all
sites on the lattice to all sites. As already mentioned, point propagators restrict the
accessible physics and we would like a robust method to go beyond this. To compute
all elements of the quark propagator however would require full knowledge of the
inverse and this is prohibitively expensive. Recall that the lattice representation
of the Dirac operator is a large but sparse matrix and if we are satisfied with
an unbiased estimator of all elements then sparse matrix methods can be used.
Stochastic estimation should be acceptable—after all we are already using it to
generate the gauge fields. We will also discuss later in this lecture the crucial role of
variance reduction in these stochastic estimations.

To begin, we consider a spectral representation of the fermion matrix,Q D �5M .
This has the advantage that Q is hermitian and so its eigenvalues are easier to
compute. If the eigenvalues and eigenvectors f�.i/; v.i/g ofQ can be computed then

Q D
NX
iD1

�.i/v.i/ ˝ v�.i/ and so Q�1 D
NX
iD1

1

�.i/
v.i/ ˝ v�.i/: (2.18)

Unfortunately, finding even a small subset of eigenvectors is computationally expen-
sive and so one is generally forced to truncate this representation forNev 
 N . This
truncated sum now violates reflection positivity and must be corrected.

Let us go back and reconsider the fermion matrix, Q, by writing instead a
stochastic representation of this matrix. This proceeds in the usual way: an ensemble
of random independent noise vectors, f�Œ1�; �Œ2�; : : : ; �ŒNr �g is generated with the
property

hh�Œr�.x/˝ �Œr�.y/ii D ıx;y; (2.19)

where the angle brackets indicate the expectation value over the distribution of noise
vectors. Z4 is a good choice, noting that each component of the noise vectors has
modulus 1, ie. �i˛.x/��i˛.x/ D 1 (with no summation), where i; j are colour
indices and ˛; ˇ label spin.

The solution vectors, �Œr� are obtained in the usual way

�Œr�.x/ D Q�1�Œr�.y/; (2.20)

In this approach the quark propagator from any point x to any point y is written

Q�1.y; x/ij˛ˇ D hh�Œr� ˝ �Œr�iiij˛ˇ D lim
Nr!1

1

Nr

NrX
r

� i˛
Œr� .y/�

jˇ

Œr� .x/
: (2.21)
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ForNr different sources the variance falls like 1=
p
Nr and it would be useful to find

methods that do better than this.

Exercise Verify that Eq. (2.21) indeed provides the inverse of the matrix Q by
multiplying the equation on both sides with Q.

2.2.2.1 Variance Reduction by Dilution

In stochastic methods variance reduction is critical and it is useful to ask if the
variance can be reduced below what has been mentioned. I will present one
successful approach, called “dilution”.

Recall that the exact propagator can be computed with a finite (but large) amount
of effort, namely by using point-propagators methods with Kronecker delta sources
everywhere on the lattice. This suggests a trick. We break the vector space of the
quark fields V into d smaller sub-spaces, V D V1˚V2˚ : : : spanned by subsets of
the basis vectors. This partitioning, called dilution, is arbitrary.

We can look at this in more detail. Dilute the noise vector � in some set of
variables so that � D P

j �
.j /. For spectroscopy where temporal correlations are

relevant an important example is time dilution which we can write as

�.x; t/ D
Nt�1X
jD0

�.j /.x; t/ (2.22)

and �.j /.x; t/ D 0 unless t D j . Each diluted source is inverted, yielding Nd pairs
of vectors f�.j /; �.j /g. An estimator of Q�1 with a single noise source is then

Nd�1X
iD0

� .i/.x; t/˝ �.i/.x0; t0/: (2.23)

In the so-called “homeopathic limit” of dilution with a noise vector for each time,
space, colour and spin component, the exact propagator is recovered in a finite
number of steps. This of course is not practical in current simulations; however, the
path through dilution space may be optimised so that the gauge field noise dominates
for a manageable number of inversions.

It is also possible to incorporate dilution with the stochastic estimation in a hybrid
method. Essentially the steps are: calculate Nev eigenvalues and eigenvectors of Q
exactly and determine Q�1

Nev
; use the stochastic method with dilution to correct the

truncation. There are further details and a discussion of further optimisation in [102].
So, how does this dilution method compare with point propagators? The left pane

of Fig. 2.3 shows the correlator for a light pseudoscalar determined on a 123 � 24
lattice at ˇ D 5:7 with Wilson fermions and 75 gauge field configurations. The
right pane shows an effective mass plot for three different states (the 1C�, � and �)
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Fig. 2.3 The left pane is a log plot of the correlator, as described in the text, comparing the point
propagators with all-to-all propagators calculated using time dilution. The right pane shows the
effective masses of three states again comparing the statistical precision of point and all-to-all
propagators

determined on the same ensembles. Both plots are taken from [102]. The light
quarks are relatively heavy with m�=m� D 0:50. One hundred eigenvectors were
determined and dilution in time, space even-odd1 and spin was implemented (in
the right-hand plot). The plots shows an impressive improvement in the statistical
precision with which the correlator and effective masses are determined when using
dilution (in time only) compared to traditional point sources.

2.2.3 Distillation

I will briefly describe a rather different approach to the determination of quark
propagation, termed “distillation” [101]. Essentially the method is a redefinition
of smearing (as described above) which as we will see leads to rather dramatic
improvements in statistical precision and the range of accessible hadronic physics.

Consider a smeared quark field, Q� derived from the “raw” quark field, � in the
path integral by Q�.t/ D �ŒU.t/��.t/. The general expression for a (e.g. mesonic)
creation operator is then

OM.t/ D Q�.t/� Q�.t/; (2.24)

where � is an operator in position, spin, colour space and the aim of smearing is to
improve the overlap onto the state of interest.

1A cubic, or hypercubic, lattice may be divided into sublattices of “even” and “odd” sites,
sometimes also referred to as checkerboarding. A lattice point, x 2 Z

4 is even or odd depending
or whether the sum of its coordinates x� is even or odd. For details see for example the textbooks
referenced.
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Let us look in more detail at the smearing operator �. Smearing is known to be
very effective in building an operator that projects onto a low-lying hadronic state
and a popular (gauge-covariant) algorithm is Gaussian smearing. A linear operator
is applied,

�J D exp
�

r2� ; (2.25)

In this example r2 is a lattice representation of the three-dimensional gauge-
covariant laplace operator on the source time-slice.

r2x;y D 6ıx;y �
3X
iD1

Ui.x/ıxCO{;y C U 
j .x � Oi/ıx�O{;y : (2.26)

Correlation functions built from such smeared operators then look like

Tr�JM
�1�JM

�1�J : : : : (2.27)

The key observation is that the Gaussian smearing operator acts as a projection
operator on the space of coloured scalar fields on a time-slice ie NS � Nc . This is
nicely seen by looking at the eigenvalues of the operator r2 as shown in Fig. 2.4,
taken from [101]. In brief then, distillation defines smearing to be explicitly a very
low-rank operator, ie ND 
 NS �Nc. The distillation operator is

�.t/ D V.t/V .t/; (2.28)

and V a
x;c.t/ is an ND � .NS � Nc/ matrix. One is free to choose a definition

of � and in studies to date it has been defined as �4 the projection operator
into D4, the space spanned by the lowest eigenmodes of the three-dimensional
laplacian. This operator is idempotent so �24 D �4 and it is also easy to see
that limND!.NS�NC / �4 D 1. Note however that this choice for r2 is not unique. It
does preserve lattice symmetries being translation, parity and charge-conjugation
symmetric. It is O.3/ symmetric and as discussed in [101] is close to SO.3/
symmetric.
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Fig. 2.4 The eigenvalues of a Gaussian smearing operator. The main pane is the raw data, barely
visible while the inset shows the first 200 modes on a log scale. Only the first O.100/ modes are
significant. The data are determined on a 163 spatial volume
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If we now consider an isovector meson two-point function

Cmeson.t1 � t0/ D hhNu.t1/�t1�t1�t1d.t1/
Nd.t0/�t0�t0�t0u.t0/ii; (2.29)

then integrating over the quark fields yields

Cmeson.t1 � t0/ D (2.30)

hTrfx;
;cg
�
�t1�t1�t1M

�1.t1; t0/�t0�t0�t0M
�1.t0; t1/

�i:
Now, substituting the low-rank distillation operator for � reduces this to a much
smaller trace, written

Cmeson.t1 � t0/ D hTr
;D Œ�.t1/�.t1; t0/�.t0/�.t0; t1/�i; (2.31)

where both �˛;aˇ;b and �˛;aˇ;b are .N
 �ND/ � .N
 �ND/ matrices and

�.t/ D V .t/�tV .t/I �.t; t 0/ D V M�1.t; t 0/V .t 0/: (2.32)

In the low-rank space, all elements of the reduced quark propagator are now
accessible in a reasonable amount of compute time. As well as the reduction in
compute time, distillation offers a second advantage: the separation of operator
construction from quark propagation. Note that in Eq. (2.31) the function �.t; t 0/,
known as the perambulator, contains the information on quark propagation while
the �.t/ describe the source and sink operators and determine the quantum numbers
of the state to be constructed. The perambulators may be calculated and stored to be
combined a posteriori with any number of source and sink operators. In addition,
the number of eigenvalues used in � may also be increased a posteriori without
starting a calculation from scratch.

Distillation has proved particularly successful for calculations of isoscalar
mesons, which traditionally have been difficult if not impossible to determine with
precision. Figure 2.5 is taken from [103] and shows the disconnected contributions
to the two-point correlation function, denoted D for the N��5� operator in the light
meson sector together with the connected contributions, C. Figure 2.6 shows the
corresponding isoscalar spectrum of light mesons.

While distillation offers a new avenue for precision spectroscopy it is not suitable
for all hadronic physics. A particular example includes the strangeness content of
the nucleon for which the standard all-to-all algorithms must be used.

In addition, the cost of distillation grows rapidly with the spatial volume of the
lattice. ND scales with NS and to maintain a constant resolution in the distillation
space the cost of a calculation scales with V 2. Table 2.1 illustrates the cost scaling
as a function of volume for mesons and baryons. However, the method has been
successfully used on volumes up to 243 with ND D 128 for a range of physics.
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Fig. 2.5 Distillation allows for precision calculation of disconnected contributions. The plot
shows the connected as well as disconnected contributions, determined using distillation. Note
the statistical precision and persistence of the signal for the disconnected diagrams
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Fig. 2.6 The light meson isoscalar spectrum from the Hadron Spectrum Collaboration

Table 2.1 The cost scaling
of distillation from inversions
to contractions for mesons
and baryons

Fermion solutions Construct � O.N 2
S /

Operator constructions Construct � O.N 2
S /

Meson contractions TrŒ����� O.N 3
S /

Baryon contractions NB���B O.N 4
S /

One solution, to mitigate the cost of distillation with increasing volume, is
once again to use stochastic estimation techniques, together with distillation called
stochastic LapH [104]. A stochastic identity matrix is constructed in the distillation
space D by introducing a vector � with ND elements and

EŒ�i � D 0 and EŒ�i�
�
j � D ıij: (2.33)
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Fig. 2.7 The ratio of the standard deviation from different stochastic estimators to the exact LapH
estimate on time slice 5 for a nucleon correlator. Filled symbols denoted noise introduced on the
entire lattice, open symbols use the “stochastic LapH” method outlined here

The distillation operator is then

� D EŒV��V � D EŒWW�: (2.34)

Of course this introduces noise into the computations and variance reduction once
again becomes important. A good approach, as we saw earlier, is then to use dilution
as before to “thin out” the stochastic noise. One can useND orthogonal projectors to
make a variance-reduced estimator of ID D EŒWW� D PN�

kD1 EŒV Pk��PkV �

with Wk D VPk� a N� � .NS � NC/ matrix. Figure 2.7, taken from [105]
demonstrates the improvements achieved using different dilution strategies for noise
in distillation space for a baryon correlator compared to noise introduced across the
entire lattice.

2.2.4 Interim Summary

In this section we have discussed methods to calculate quark propagation and make
measurements. In this context it is useful to note that smearing and distillation are
both rotationally symmetric operations and so do not change the quantum numbers
of the states being determined. Algorithms which address the exponential fall in
signal-to-noise in correlators and which reduce the cost of making measurements
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are crucial. This is especially true for precision spectroscopy, the determination of
exotic states and isoscalar mesons and for a strategy to include multi-hadron states
in lattice calculations.

Exercise Do the linear algebra to derive Eqs. (2.30–2.31).

2.3 Lattice Symmetries and Classifying States

In continuum QCD observable states are classified according to angular momentum
and parity, JP which label the irreducible representations (irreps) of the relevant
symmetry group: the improper rotation group O.3/. These irreps include bosonic
(single-valued) and fermionic (double-valued) representations and in addition, the
projection of angular momentum onto some axis, Jz labels rows of the representa-
tion.

On a spatially isotropic lattice the continuous rotational symmetry is broken and
the relevant symmetry group is Oh, the cubic point group. Eigenstates of the lattice
hamiltonian then transform under irreps of Oh and lattice states are classified by
these irreps (�P ) rather than by JP . A manifestation of this symmetry breaking
is that continuum states with the same JP but different Jz values are in general
separated across lattice irreps. It is important then to design operators which couple
strongly to lattice eigenstates, i.e. which project into the irreps of Oh.

Now, let us consider the symmetry group of the cube in more detail. The correct
group to consider is O the octahedral group which is dual to a cube. There are
24 rotational (orientation-preserving/proper) symmetries and 48 if one includes
combinations of reflection and rotation. This leads us to consider the cubic point
groupOh D O ˝ fI; Isg. O has five conjugacy classes (Oh has 10) and the number
of conjugacy classes gives the number of irreps. Using Schur’s lemma for a group
G and irreps �i of G,

jGj D
X
i

dim.�i /
2; (2.35)

and a short calculation shows that for O we get: 24 D 12 C 12 C 22 C 32 C 32
the dimensions of the five irreps of O labelled A1;A2;E; T1; T2 respectively.
The extension to Oh includes the 24 improper rotations (spatial inversions) of O
such that

Is

0
@xy

z

1
A!

0
@�x�y
�z

1
A : (2.36)
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The number of group elements is now 48 with 10 irreps labelled

A1g; A1u; A2g; A2u; Eg;Eu; T1g; T1u; T2g; T2u

and the .g; u/ label the even (gerade) and odd (ungerade) behaviour under spatial
inversion.

For baryons one considers OD , the double cover of O . This 48-element group
is obtained from O by including a negative identity (corresponding to rotations
through 2�). Therefore OD is the group through which the identity is recovered
after rotation through 4� . It has eight single-valued irreps, five of which correspond
to irreps of O . The three new irreps are G1;G2;H and once again, using Schur’s
lemma we get 24 DPi �

2
i D 22C22C42 giving us the dimensions of the additional

irreps (2; 2; 4 respectively).
Having briefly covered the properties of the relevant symmetry groups for

mesons and baryons in lattice QCD the next section will discuss how a connection
is made between the states identified in a lattice calculation and their continuum
counterparts. I have not discussed group theory in detail and refer the reader to the
many excellent textbooks some of which are listed here: [106–109].

2.3.1 Connecting Lattice and Continuum Groups

In this discussion, I will focus on O and meson states for simplicity, the procedure
for the double cover group,OD and baryons is the same.

In SO.3/ there are an infinite number of irreps (J values) whereas for O , as we
have just seen, there are just five irreps. Therefore there is not a one-to-one mapping
between the irreps but rather lattice irreps may contain many states from different
continuum irreps. To identify which continuum states can occur in a particular lattice
irrep we note firstly thatO is a subgroup of SO.3/. By restricting the irreps of SO.3/
labelled by J to rotations allowed on a lattice we generate representations that are
reducible ie J is reducible under O or Oh. This procedure is called subduction and
using the relationship

n
.˛/
J D

1

NG

X
k

nk�
.˛/

k �
.J /

k ; (2.37)

it is possible to find the multiplicity of the irreps of SO.3/ in O . Note that in
Eq. (2.37) � is the character of a representation, NG is the order of the group
and nk is the dimension of the kth representation. Table 2.2 gives an example
of this subduction process for continuum states up to J D 4. In principle then,
to identify say a J D 2 state, results from the E and T2 irreps at finite lattice
spacing should be extrapolated to the continuum where for a particular state the
results should agree. This is an expensive procedure, requiring simulations to be
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Table 2.2 The results of subduction showing the relationship between
the continuum and lattice irreps, up to J D 4. Note that as discussed
in the text a continuum spin may be appear in a number of lattice irreps
making spin identification for states with J > 1 complicated

A1 A2 E T1 T2

J D 0 1

J D 1 1

J D 2 1 1

J D 3 1 1 1

J D 4 1 1 1 1
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

repeated at multiple lattice spacings. Even if this were feasible it is not guaranteed
to yield an unambiguously determined state. Consider the following example in
the charmonium system. From Table 2.2 we see that a spin four state, 4CC should
appear, at finite a, in the A1;E; T1; T2 irreps. However, in charmonium there is
also a near-degenerate triplet of P waves with quantum numbers .0CC; 1CC; 2CC/
which are distributed across the same irrep pattern, namelyA1;E; T1; T2. In a lattice
calculation, even after extrapolation to the continuum limit, it would be extremely
difficult, if not impossible, to disentangle a radial excitation of this triplet from the
4CC ground state without some additional information. Before I discuss how to
tackle this problem let me briefly mention the group theory of two particles in a
box. This, of course, is relevant once states above threshold are considered where
multi-hadron operators must be included. In general, for mesons in flight the relevant
symmetry group is reduced to the little group of allowed cubic rotations that leave
the momentum invariant. There is a detailed description in [110, 111].

2.4 Building Operators and Extracting Energies

In this chapter we have spent some time looking at different methods for quark
propagation. Now, we will discuss operator construction and how to extract energies
from the correlation functions determined in a lattice calculation. The meson and
baryon operators are generally of the form O D N�i˛.x; t/�˛ˇ�iˇ.x; t/ and O D
�abc.�a.x; t/� �b.x; t//�c.x; t/.

The simplest operators we can consider are colour-singlet local fermion bilinears
such as O� D Nd�5u and O� D Nd�iu for mesons and ON D �abc.uaC�5db/uc and
O� D �abc.uaC��db/uc for baryons. The local operators written here give access
to states with J D 0; 1; 1

2
; 3
2
. While one can choose different Dirac structures � the

spin and parity of the hadrons will put constraints on the number of operators that
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can be constructed. To study higher-spin states with J > 1 (mesons) and J > 3=2

(baryons) additional operators must be used. In addition we would like many more
operators that all transform irreducibly under some irrep, enabling a variational
analysis.

One approach, using smearing techniques described in Sect. 2.2.1 is to use
smearing functions of different widths. Combining these sources can generate nodes
in the wavefunctions to better overlap with (radially) excited states. See for example
[112] for a discussion and results.

Another approach (and one which can be combined with different smearings)
is to use extended operators. Recall that lattice operators are bilinears, with path-
ordered products between the quark (and the anti-quark) fields. Different offsets,
connecting paths and spin contractions give different projections into lattice irreps.
Further simple examples are given in Fig. 2.8 for mesons and in Fig. 2.9, taken from
[113], for baryons. In this way one can make arbitrarily complicated operators to
access high-spin states and to allow for a variational analysis. An early success of
this approach was a determination of the Yang-Mills glueball spectrum [77]. QCD
is a non-abelian gauge theory and so allows bound states of pure glue. In this case
the interpolating fields are purely gluonic and built from Wilson loops, as shown in
Fig. 2.10. The spectrum which was extracted using these operators is also shown in
Fig. 2.10. Note that states with spin up to J D 3 were determined.

Fig. 2.8 Meson operators. Written in full these are O˛ˇ D P
x

N�˛.x/�ˇ.x/, Oi
˛ˇ DP

x
N�˛.x/Ui .x/�ˇ.x C O{/, Oij

˛ˇ D P
x

N�˛.x/Ui .x/Uj .x C O{�ˇ.x C O{ � O|/ respectively

��
��

���

single-
site

�	

�

�� �
singly-

displaced

�� �
�

triply-
displaced

Fig. 2.9 Three different prototype extended baryon operators. The hollow circle is the reference
site
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Fig. 2.10 A selection of operators for glueball spectroscopy. These were used in a variational
calculation to determine the (quenched) glueball spectrum shown in the right plot

2.4.1 Constructing Good Operators

We have seen how operators of arbitrary complexity can be calculated to access,
in principle, high-spin states. However, it is useful to ask what makes a “good”
operator in order to maximise the statistical precision and to ensure reliable state
identification at finite lattice spacing. A useful list of properties for operators
includes

1. have definite momentum and transform under the symmetries of a lattice irrep
2. the basis of operators used should have a good overlap with the states of interest

(eigenvectors of the variational method) which are, or are close to being, linearly
independent

3. not noisy ie produce a correlator with acceptable statistical precision over a
reasonable number of timeslices

On the last point we have seen how to improve statistical precision using smearing
and distillation as well as noise reduction in all-to-all propagators using e.g. dilution.

Now, recall that in an earlier lecture we discussed the relationship between lattice
and continuum irreps. If we now rewrite Table 2.2 we see that a correlator, C.t/ D
h0j�.t/�.0/j0i, contains in principle information about all (continuum) spin states
that appear in a lattice irrep,�PC (Table 2.3).

The objective is to build a basis of good operators according to the bullet points
listed earlier in this section. There are different approaches to optimising lattice
operators and I present one here [114].
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Table 2.3 The relationship
between lattice and
continuum irreps, determined
by subduction. The table
illustrates that lattice
operators that transform
according to a lattice irrep
will contain information
about more than one
continuum spin state

Lattice irrep, � Dimension Continuum irreps, J

A1 1 0; 4; : : :

A2 1 3; 5; : : :

E 2 2; 4; : : :

T1 3 1; 3; : : :

T2 4 2; 3; : : :

G1 3 1
2
; 7
2
; : : :

G2 3 5
2
; 7
2
; : : :

H 4 3
2
; 5
2
; : : :

We begin by considering continuum operators built from n derivatives of the form

� D N�� .Di1Di2Di3 : : : Din/ �: (2.38)

Construct irreps of SO.3/ and then subduce these representations into Oh. Now
replace the derivatives with lattice finite differences such that

Dj�.x/! 1

a

�
Uj .x/�.x C O| � U 

j .x � O|/�.x � O|/
�
; (2.39)

where we note that on a discrete lattice, covariant derivatives become finite
displacements of quark fields connected by links.

The final step is the empirical observation, with for example a more detailed
discussion in [115], that the overlaps Z D h0j��PC jJ PC.�/i in the different lattice
irreps subduced from a common continuum irrep are the same up to rotation-
breaking effects.

To see this explicitly let us consider an operator for the J PC D 2CC meson.
Recall from Table 2.2 that a spin two state will be split across the T2 and E
lattice irreps. In the continuum an operator that creates a state with 2CC quantum
numbers is

�ij D N�
�
�iDj C �jDi � 2

3
ıij� �D

�
�: (2.40)

Following the recipe described above we substitute gauge-covariant lattice finite
differences for D. By subduction we find that

�T2 D f�12; �23; �31g ;

�E D
	
1p
2
.�11 � �22/; 1p

6
.�11 C �22 C �33/



:
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Fig. 2.11 An example of the agreement of overlaps of lattice operators from different irreps which
have been subduced from the same continuum operator. For more details see [116] and references
therein

States determined from variational analyses in these two different irreps should
then agree in the continuum limit and at finite a be reasonably close, assuming
(hopefully) small discretisation effects. A second tool at finite a is to examine the
operator overlaps Z for the signature of continuum symmetry

Z D h0j�.T2/j2CC.T2/i D h0j�.E/j2CC.E/i; (2.41)

up to rotation-breaking effects. This approach has been followed by the Hadron
Spectrum Collaboration to good effect. Figure 2.11 taken from [116] shows this
operator overlap analysis for spin three and spin four states in charmonium. In each
case there is very good agreement across the relevant irreps (A2; T1; T2 for J D 3

and A1; T1; T2; E for J D 4).

2.4.2 Fitting Data to Extract Energies

Hadron energies are determined from 2-point correlation functions. We begin by
considering a simple correlator of the form

C.p; t/ D
X

x

eip�x hO.x; t/O.0; t/i; (2.42)
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where O is a single interpolating operator for the hadron of interest. Recall that by
inserting a complete set of energy eigenstates jni and assuming a discrete energy
spectrum as t !1 and for hadrons at rest

C.t/! 1

2En
jh0jOjn0ij2 e�E0t ; (2.43)

where n0 is the lightest state that couples to O and has energyE0.
Again, recall that a useful quantity for this analysis is the effective mass

atMeff.t/ D ln

�
C.t/

C.t C 1/
�
t!1�! constant; (2.44)

and an alternative definition appropriate for mesons, under periodic boundary
conditions, uses the hyperbolic cosine and is given by

atMeff.t/ D cosh�1
�
C.t C 1/C C.t � 1/

2C.t/

�
: (2.45)

At large time separations on the lattice the ground state dominates and the effective
mass should plateau at this energy. Of course the onset and length of the plateau
will depend on O. The hadron mass is extracted from fits to correlator data in this
plateau region. Such fits require some finesse however since statistical errors grow
exponentially with t (except in the case of the pion) and fitting too far out in the
temporal extent increases the statistical uncertainty.

Figure 2.12 shows a typical effective mass plot—in this case for the vector J=�
charmonium state. The cyan box highlights the plateau region, at large times, where
the effective mass converges to the ground state. In this region the correlator data is
fitted to the expected form, C.t/ D Ae�E0t using, for example, a �2 minimisation
algorithm with A and E0 free parameters and for some “reasonable” choice of time
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Fig. 2.12 The same plot as in Fig. 2.2 now with the plateau region and the region of excited state
contamination highlighted
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range. Statistical errors on the fitted energy can be determined using bootstrap or
jackknife (described later). The plot also shows a region where excited state energies
are significant and a single-exponential fit would not be reasonable.

2.4.2.1 Resampling Techniques

Bootstrap and Jackknife are examples of what is known as resampling and both are
used extensively to estimate statistical errors in lattice calculations.

The jackknife method was introduced by Quenouille in 1949 to estimate the
bias of an estimator and later further refined by Tukey (who also gave us the
FFT) in 1957. Consider a set of N measurements, and remove the first leaving a
jackknifed set of N � 1 resampled measurements. Repeat the analysis (in our case
the exponential fits) on this reduced set, giving parameters ˛J.1/. The resampling
is repeated, discarding the second measurement etc to get a set of parameters
˛J.i/; i D 1; : : : ; N . The statistical error is then estimated from averages over the
resampled set


2J D
.N � 1/
N

NX
iD1

�
˛J.i/ � ˛

�2
; (2.46)

where ˛ is the result from fitting the full dataset.
The second resampling technique is the bootstrap method, developed by Efron

in the late 1970s. In this case a new dataset is created by drawing N datapoints,
with replacement, from the original dataset of size N . Replacement means that a
configuration may appear twice in a sample; thus you do not get the original set
each time but a set with a random fraction of the original points with some appearing
multiple times. As for the jackknife method, the analysis is repeated on each set.

2.4.2.2 Notes on Fitting

When fitting correlator data to exponentials a good fit can be characterised by a few
measures

1. the fit should be stable with respect to the choice of time range in the plateau
region. In particular, it should be stable with respect to small changes in tmin, the
minimum timeslice included in the fit.

2. the fit should include a reasonable range in t . The number of points included will
of course depend on the temporal extent and resolution of the lattice.

3. the energy extracted should be stable if additional exponentials are added to the
fitting function.

4. for correlated fits, a good �2=Nd:o:f:, typically of order one when this quantity can
be reliably determined.

5. “reasonable” statistical errors on the fitted mass.



2 Lattice Methods for Hadron Spectroscopy 61

Within the lattice QCD community there are some well-established quantities
which are used to describe the quality of fits, including

1. a sliding window plot: the fitted mass is plotted as a function of tmin. A plateau
region in this plot means the fitted mass is stable as a function of tmin.

2. a fit histogram: the idea is to design a quantity that monitors the behaviour of
a good fit as described above. An example is to plot QNd:o:f:=.�m/ for each
.tmin; tmax/ with Q D � Œ.interval � Nparam/=2; �

2=2� and choose the .tmin; tmax/

that maximises this quantity.
3. �-by-eye: always a good idea to check fit ranges do look reasonable on the

effective mass plots.

The analysis discussed so far is focused on determinations of ground state
energies. Looking again at the sample effective mass plot, shown in Fig. 2.12,
it is clear that while a single exponential dominates at large times, at short
time separations there are contributions from higher excited states in the form of
additional exponentials in the correlation function

C.t/ D Ae�E0t C Be�E1t C : : : : (2.47)

A two-exponential fit with parameters A;B;E0;E1 may allow for a determination
of E1, the energy of the first excited state. A reasonable approach since the regions
where E0 and E1 are distinct is to fit for E0 as described, and freeze its value in a
fit for E1. However, these two exponential fits can be very unstable and a different
approach is needed especially to extract energies above just the first excited state.
There are a number of techniques for this including Bayesian analysis; �2-histogram
analysis and a variational analysis. I will discuss the latter in more detail.

2.4.2.3 A Little More on Variational Analysis

We have already seen the basics of a variational analysis and is described in [117,
118] and [93]. In a brief recap we consider a basis of operators Oi for i D 1; : : : ; N
in a given lattice irrep. Form a matrix of correlators

Cij.t/ D hOi .t/O
j .0/i; (2.48)

and treat this system as a generalised eigenvalue problem

C.t/vn.t; t0/ D �n.t; t0/C.t0/vn.t; t0/; (2.49)

where t0 is a reference timeslice which you choose. The vectors vn diagonaliseC.t/
and for finite N one can show that a generalised effective mass is

Eeff
n .t; t0/ D �@t log�n.t; t0/ D En CO.e��Ent /: (2.50)
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The eigenvalues �n that are solved for in the GEVP and ordered such that �1.t/ >
�2.t/ > : : : �N .t/ at large t . The �i are then related to the energies of the states in
the irrep and these energies can be extracted from fits to the “principal correlators”.
When using jackknife or bootstrap techniques the eigenvectors resulting from
the GEVP should be also be monitored to maintain a consistent ordering in the
samples. Note that the procedure depends on the choice of reference timeslice, t0.
In an analysis this parameter should be varied to test the robustness of results. In
particular, if the value of t0 is too small then states with energies larger than that of
interest, say En will contaminate the results. This is especially true if there is just
a small energy gap to EnC1 and in this case a large distance in t will be needed to
resolve a plateau. Values of t0 too large may result in numerical instabilities.

2.4.2.4 Anisotropic Lattices

Let me make a brief comment here on the utility of anisotropic lattices for hadron
spectroscopy. If we can build a good basis of operators we have seen how we can
extract energies for low-lying states from the correlator at short distances. The lattice
correlator can only be sampled at discrete values of t and signal can fall quickly for
a massive state, while the statistical noise does not. A brute force approach to reduce
the lattice spacing in all directions is a costly solution to this problem. Nevertheless
one can mitigate the cost by reducing the temporal lattice spacing, at whilst keeping
the spatial mesh coarse. This is an anisotropic lattice.

Of course, the anisotropic lattice reduces the symmetries of the theory from the
hypercubic to the cubic point group and for example, the dimension four operators
on the lattice are split

TrF��F�� !
˚
TrFijFij;TrFi0Fi0

�
N���D�� !

˚ N��iDi�; N��0D0�
�
:

Note that on the 3˚ 1 anisotropic lattice described here the spatial symmetries are
unchanged from the isotropic case and the group theory and operator construction
discussions from earlier sections are unchanged.

There is a cost to this approach however. The space-time symmetry breaking
introduces extra bare parameters in the lagrangian, arising from the so-called aspect
ratio, � D as=at , which must be tuned to restore Euclidean rotational invariance in
the continuum limit. For QCD one can think of this as demanding that quarks and
gluons “feel” the same anisotropy. This requires an a priori tuning of parameters. In
dynamical QCD where the fermions contribute through the determinant term in the
path integral two physical conditions, one in the gauge sector and one in the fermion
sector, must be simultaneously satisfied. A typical example uses the sideways
potential and the pion dispersion relation. Each time the lattice spacing (temporal or
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spatial) is changed the tuning must be repeated. In addition taking a continuum limit
is challenging as one should consider the temporal and spatial spacings separately.
Nevertheless, the anisotropic lattice as proved extremely effective for resolving
precisely the energy levels of hadrons from light to heavy.

2.4.3 A Lattice Error Budget

In this section I have not discussed the standard systematic uncertainties which
must be accounted for in a lattice calculation. These effect all lattice calculations,
not specifically hadronic quantities and have also been discussed elsewhere at this
School. They include lattice artefacts: which require an extrapolation to the con-
tinuum limit, a ! 0; finite volume effects: in spectroscopy energy measurements
can be distorted by the finite box. A rule of thumb is that m�L > 3 is reasonable
for many quantities; unphysically heavy pions: simulations at the physical point
are now a reality but most calculations still rely on chiral extrapolation to reach
physical up and down quark masses. Chiral perturbation theory (ChPT) is used to
guide these extrapolations but an open question is whether chiral corrections are
reliably described by ChPT; Fitting uncertainties: the choice of fit range and t0 and
how to choose these quantities has been discussed above.

2.5 Current Challenges

In this final section I would like to discuss some challenges for lattice hadron
spectroscopy. I will focus on one topic: resonances and scattering. The most recent
progress on this (and other topics in spectroscopy) has been described in plenary
and parallel sessions at Lattice 2013 [119].

2.5.1 Resonances and Scattering States

In this chapter we have assumed that all particles in the spectrum are stable, and that
quark bilinears or three-quark operators are a reliable way to reproduce the states of
interest. However, the majority of states are not stable and are in fact resonances or
scattering states. A resonance is a state that forms for example when colliding two
particles and which then decays quickly to scattering states. Resonances respect
conservation laws: if the isospin of the colliding particles is 3

2
then the resonance

must have isospin 3
2

(a � resonance). They are usually indicated by a sharp peak in
a cross-section as a function of the centre-of-mass energy of the collision.
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A challenge for lattice QCD is to distinguish and describe resonances and
scattering states. The difficulty for lattice calculations lies in the Maiani-Testa no-go
theorem [120]. Recall that importance sampling in Monte-Carlo simulations relies
on having a path integral with positive definite probability measure, which is the
motivation for the Wick rotation to Euclidean space. However, the Maiani-Testa
theorem states that in general, scattering matrix (S -matrix) elements cannot be
extracted from infinite-volume Euclidean-space correlation functions. In Minkowski
space the S -matrix elements are complex functions, above kinematic thresholds.
However, in a Monte-Carlo calculation (in Euclidean space) these matrix elements
are real and there is no distinction between the jini and jouti states and information
about the phase due to final-state interactions is lost. Lüscher showed how infor-
mation about elastic scattering can be inferred from the volume-dependence of the
spectrum. The formalism for the relativistic (elastic) case in a cubic box for a system
at rest is described in [117, 121] and was subsequently extended to moving frames
in [122–124].

This has led to renewed progress in recent years in studies of scattering states
and resonances which has been enabled by some of the new techniques described in
these lectures. In particular, to be able to determine volume-dependence reliably it is
crucial to have precise data and unambiguous spin-identification so that two-hadron
states can be distinguished from nearby excited states.

2.5.1.1 The Lüscher Formalism

In general, on a finite lattice with periodic boundary conditions the hadron momenta
are quantised: p D 2�

L

˚
nx; ny; nz

�
, with ni 2 f0; 1; 2; : : : L � 1g, and the energy

spectrum is a set of discrete levels, classified by p. The allowed energies, for a
particle of mass m are

E D
s
m2 C

�
2�

L

�2
N 2; where N2 D n2x C n2y C n2z : (2.51)

The density of states in such systems will increase with energy since there are more
momenta combinations for a givenN2 e.g. both .3; 0; 0/ and .2; 2; 1/ correspond to
N2 D 9. It is also of course possible to construct a system with zero total angular
momentum from two hadrons with back-to-back momentum, p and �p.

A brief example is given by the � ! �� system. The energy levels of two non-
interacting pions in a periodic box of length L are

E D 2
q
m2
� C p2; p D

2�jnj
L

(2.52)
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where as usual n has components ni 2 Z. Considering the interacting case, the
energy levels are

E D 2
q
m2
� C p2; p D

�
2�

L

�
q (2.53)

where q is no longer constrained to originate from a quantised momentum mode.
Therefore the energy eigenvalues will deviate from the noninteracting case. These
deviations contain information about the underlying strong interaction and yield
resonance information via the Lüscher formalism described by

ı.p/ D ��.q/C �n; (2.54)

where

tan�.q/ D � �3=2q

Z00.1I q2/ and q D pL

2�
: (2.55)

As usual, pn is defined for level n with energy En from the dispersion relation
En D 2

p
m2 C p2n. The Z00 is a generalised Zeta function given by [125]

Zjm.s; q
2/ D

X
n2Z3

rj Yjm.�; �/

.n2 � q2/s : (2.56)

Once the phase shift is determined and for a well-defined resonance, one can fit a
Breit-Wigner to extract the resonance width �� and mass m�,

p3

E
cot ı.p/ D � p3�

m2
���

.E2 �m2
�/; p� D 1

2

q
m2
� � 4m2

�: (2.57)

To extract these energy shifts one needs good operators for both single-hadron
and multi-hadron states. Distillation has proved a crucial tool in this regard. Our
example, � ! �� , is in isospin one, and in principle this involves disconnected
diagrams which, as already discussed, add additional complexity to lattice calcula-
tions. One can learn a lot however, by looking at the simpler I D 2, �� system.
The Hadron Spectrum Collaboration has produced a detailed study of this system
including many operators to map out the phase shift in great detail. Figure 2.13
shows the energy shifts in I D 2 �� scattering from [126]. The phase shift (for
l D 0, the lowest wave and l D 2) has been calculated for many different momenta
and different volumes as shown in Fig. 2.14. More recently [127], the I D 1 phase
shift has been mapped out in great detail and a resonance width and mass extracted.
There are already similar calculations in the open charm sector both with much
fewer momenta points or lower statistics [128, 129]. More can be expected in the
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Fig. 2.13 Energy shifts in I D 2 for three volumes and three lattice irreps. Solid black lines are
the energy levels extracted from a variational analysis. The dashed lines are the expected non-
interacting levels and the orange boxes are possible ��� scattering states
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Fig. 2.14 The phase shift in I D 2, for l D 0 and l D 2 at a pion mass of 396MeV

near future and new theoretical frameworks in scattering [130] hint at interesting
prospects for further results.
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2.6 Summary

There is much exciting work in spectroscopy that I have been unable to cover in
these lectures and I refer the reader to the proceedings of recent Lattice conferences
for further details. I chose to focus on methods, both old and new, for the basic
building blocks of spectroscopy and hopefully described their applications as well
as some of the attendant pitfalls. Lattice hadron spectroscopy is progressing rapidly
at the moment and new ground-breaking calculations and methods are emerging. We
can also expect many new discoveries and data for existing and planned experiments
in the next ten years. The challenge is for lattice calculations to keep pace!
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Chapter 3
Hadron Structure on the Lattice

K.U. Can, A. Kusno, E.V. Mastropas, and J.M. Zanotti

Abstract The aim of these lectures will be to provide an introduction to some of
the concepts needed to study the structure of hadrons on the lattice. Topics covered
include the electromagnetic form factors of the nucleon and pion, the nucleon’s
axial charge and moments of parton and generalised parton distribution functions.
These are placed in a phenomenological context by describing how they can lead
to insights into the distribution of charge, spin and momentum amongst a hadron’s
partonic constituents. We discuss the techniques required for extracting the relevant
matrix elements from lattice simulations and draw attention to potential sources of
systematic error. Examples of recent lattice results are presented and are compared
with results from both experiment and theoretical models.

3.1 Introduction

The proton was believed to be a point-like particle until the measurement of its
magnetic moment by Nobel-Prize laureate Otto Stern in 1933. The significant
deviation of the measured value �p � 2:5�N from the unit nuclear magneton
�N D e=2MN , where MN is the nucleon mass, provided first evidence for the
composite nature of the proton. The latest CODATA value now indicates that �p D
2:792847356.23/�N . Our modern understanding is that the nucleon is not a point-
like particle but a colour-singlet bound state of the fundamental building blocks
of hadronic matter: quarks and gluons. It is a challenge, however, to understand
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how these constituents are distributed inside the nucleon and how they combine to
give the nucleon its fundamental properties. We can immediately think of questions
like: being a charge neutral object, does the neutron have a charged core in analogy
with an atom or is the charge distributed homogeneously? How do the constituents
combine to form the different hadrons? And can we find unravel the spin structure
of the proton?

The electromagnetic current is the perfect probe for investigating the charge and
magnetisation distributions of the nucleon, whereas the axial-vector current can
resolve the spin structure. For instance, it is still a mystery as to how much of the spin
of the proton is carried by quarks and gluons. Deep-inelastic scattering experiments,
for example, indicate that only 1=3 of the proton’s spin is carried by quarks and
antiquarks [131,132]. This problem was originally known as the “proton-spin crisis”
and demonstrates that questions still remain as to the fundamental structure of
hadrons.

Experimental probes of nucleon electromagnetic structure are based on electron-
proton scattering processes, since QED is a well-understood theory, and its small
fine-structure constant allows perturbative calculations. From the experimental
point of view it is also easy to accelerate electrons and tune their energies to
desired values. The electron-proton scattering processes can be considered in two
categories: elastic and deep-inelastic scattering.

In these lecture notes, we will first introduce some of the phenomenological
quantities used to assist in our understanding of nucleon structure and some of
the experimental processes used to determine them. We then turn our attention to
studying some of the techniques used to study these same quantities on the lattice,
together with some detailed examples for the more common calculations. We will
finish by placing the lattice methods in context by highlighting a couple of recent
results and comparing them to experimental determinations.

3.2 Experimental Probes

3.2.1 Elastic e–p Scattering

In elastic electron-nucleon scattering, the electron interacts with the nucleon via
photons and leaves the nucleon intact but with recoil. This process is dominated by
single-photon exchange, and it is possible to map out the charge and magnetisation-
density distributions of the nucleon by varying the momentum transferred to the
nucleon target. If we consider the nucleon to be a point-like particle, we can describe
the interaction cross section of this process with the Mott formula:

�
d


d˝

�
point
D .Z˛/2E2

4k2 sin4.�=2/

�
1 � k2

E2
sin2.�=2/

�
; (3.1)
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whereZ is the atomic (proton) number, ˛ is the fine-structure constant,E and k are
the energy and momentum of the incoming electron, and � is the scattering angle
described as q2 D �4EE0 sin2.�=2/, withE 0 the outgoing electron energy and q the
transfer momentum. However, experimental data shows a clear deviation from the
point-like cross section, indicating that the nucleon has some internal structure. So it
is necessary to reconsider the cross-section formula and include a term that depends
on q2,

d


d˝
D
�
d


d˝

�
point

ˇ̌
F.q2/

ˇ̌2
: (3.2)

3.2.1.1 Rosenbluth Formula

We will attempt to rewrite the cross section starting from the S-matrix. For
simplicity, we will consider only the tree-level diagram, however, since the fine-
structure constant is small and one-photon exchange diagrams dominate the process.
This was expected to be a safe approximation, but in fact it is now known that the
inclusion of two-photon exchange effects are vital (see, e.g., [133]), especially at
large q2; nonetheless, we will not consider these here. The S-matrix is given by

S D .2�/4ı4.k C P � P 0 � k0/Nu.k0/.�ie��/u.k/
�i
q2

˝
P 0j.ie/J�jP

˛

D �i.2�/4ı4.k C P � P 0 � k0/M ;

(3.3)

where the Dirac-delta function ensures energy-momentum conservation, Nu.k0/ and
u.k/ are the fermion spinor fields with four-momenta k and k0, .�ie��/ is the
electron-photon vertex, and hP 0j.ie/J�jP i the photon-nucleon vertex. In the second
step we have introduced the invariant amplitude M,

M D 1

q2
Nu.k0/.�ie��/u.k/hP 0j.ie/J�jP i: (3.4)

The electromagnetic current is

J� D
X
i

ei N i�� i ; (3.5)

where the index i sums over all quark flavours with mq 
 mp , namely the up,
down and strange quarks. The cross section in terms of invariant amplitude can be
written as

d
 D E 0

2EM2

1

1C 2E
M

sin2.�=2/
jMj2 d˝

.2�/2
; (3.6)
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where E 0 is the energy of the scattered electron, and we write the squared invariant
amplitude in terms of leptonic and hadronic tensors:

jMj2 D e4

Q4
`��W�� : (3.7)

Here �q2 D Q2, the leptonic tensor is defined as

`�� D Nu.k0/��u.k/Nu.k/��u.k0/; (3.8)

and the hadronic tensor as

W �� D ˝P jJ � jP 0˛ hP 0jJ�jP i : (3.9)

The above hadronic matrix element between nucleon states is defined by two
Lorentz-invariant form factors (FFs),

hP 0jJ�.q/jP i D Nu.P 0/
h
��F1.q

2/C i
�� q�
2M

F2.q
2/
i

u.P /; (3.10)

with 
�� D i
2
Œ��; ��� and M being the mass of the nucleon. F1 and F2 are referred

to as the Dirac and Pauli form factors, respectively. Using the fact that both tensors
are symmetric and conserved (i.e. q�`�� D q�W�� D 0), the elastic scattering
cross-section in the lab frame can be written as

d


d˝
D 
Mott

�
G2
E.Q

2/C �G2
M .Q

2/

1C � C 2�G2
M .Q

2/ tan2
�

2

�
; (3.11)

where we have defined the Sachs electric and magnetic FFs,

GE.Q
2/ D F1.Q2/� �F2.Q2/;

GM.Q
2/ D F1.Q2/C F2.Q2/;

(3.12)

in terms of F1 and F2 and the factor � D Q2=4M2. Rewriting the cross
section in terms of the virtual photon’s longitudinal polarisation � D .1 C .1 C
�/2 tan2.�=2//�1, we end up with the Rosenbluth formula,

d


d˝
D 
Mott

1C �
h
G2
E.Q

2/C �

�
G2
M .Q

2/
i
: (3.13)

So we see that it is possible to extract the electric and magnetic form factors from
the slope and intercept of a curve fitted to the experimental cross section plotted
as a function of scattering angle at fixed momentum transfer Q2. This is known
as the Rosenbluth separation technique. We note from Eq. (3.13), however, that the
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coefficient ofGE is suppressed at largeQ2, and hence the cross section is dominated
by GM in this domain. Therefore, it is harder to extract information on G2

E at large
momentum transfers.

3.2.1.2 Polarisation Transfer

Given the shortcomings of the Rosenbluth separation technique in extracting
accurate results for the electric form factor at largeQ2, it is clear that there is a need
for new experimental methods. The need for polarisation-transfer techniques was
pointed out in several papers [134–137]. With advances in experimental techniques
such as highly polarised and high-luminosity electron beams, polarised targets (e.g
1H, 2H, 3He) and large and efficient neutron detectors, the polarisation-transfer
experiments began to give us more insight about the nucleon’s structure.

It is possible to obtain the ratio Gp
E=G

p
M from the elastic scattering of longi-

tudinally polarised electrons from unpolarised protons in terms of the transferred
polarisation components perpendicular (Pt ) and parallel (Pl ) to the recoil proton’s
momentum in the scattering plane [135, 137],

G
p
E

G
p
M

D �Pt
Pl

E C E 0

2M
tan

�
�

2

�
; (3.14)

where E and E 0 are the incident and scattered electron energy, respectively, and �
is the electron scattering angle.

A recent analysis by the JLab Hall-A Collaboration [138] showed that, unlike the
conventional Rosenbluth-method estimation which provided �pG

p
E=G

p
M � 1, the

proton form-factor ratio clearly deviates from unity. Figure 3.1 from [138] shows
the behaviour of this ratio.

Fig. 3.1 Experimental data
with fitted predictions based
on Dyson-Schwinger
equation calculations. Empty
circles indicate the
unpolarised, whereas the
filled ones are obtained from
polarisation-transfer
experiments. Figure from
[138] )2 (GeV2Q
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It is evident that the Gp
E falls faster than Gp

M , and their Q2 dependences differ.
If the planned experiments forming part of the JLab upgrade1 find the slope of the
linear fall stays unchanged, then it might lead to the conclusion that Gp

E changes
sign. One last note is that the discrepancy between the Rosenbluth and polarisation-
transfer methods is believed to be due to the two-photon exchange (TPE) radiative
corrections to the cross-section measurements. A broad discussion about TPE can
be found in [133] and references therein.

3.2.1.3 Physical Interpretation

The physical interpretation of the electric and magnetic form factors is that for
small Q2, or in the limit M ! 1 such that Q2 
 M2, we can assume that
the initial- and final-state nucleons are fixed at the same location and that they have
the same internal structure. We then have the physical interpretation that the Fourier
transforms of the form factors lead to density distributions. However, since M is
finite, one should consider nucleon recoil effects with increasing Q2. In this case,
the initial and final nucleon states no longer have the same momentum, thus their
wavefunctions differ (i.e. there is a relative Lorentz contraction), and it is no longer
possible to have a probability or density interpretation [139].

One method for circumventing this issue is to consider the Breit frame where the
initial and final momenta of the nucleon have the same magnitude. In this case, the
initial- and final-state nucleon wavefunctions are sampled in the same frame, and
we recover our density-distribution interpretation.

An alternative frame that also retains the density-distribution interpretation of
form factors in a model-independent way is given by the infinite-momentum frame
where the parton (quark) charge density in transverse space is given as a two-
dimensional Fourier transformation of F1,

�.b/ D
Z
d2q?
.2�/2

e�ib
?

�q
?F1.Q

2 D q2?/; (3.15)

where q? and b? are the momentum transfer and distance of the quark to the center
of momentum, respectively, of a fast-moving nucleon in the longitudinal direction.

Pursuing the spatial density interpretation, we can expand the Fourier transform
of such a distribution, which allows us to write the electric form factor as

GE.Q
2/ D

Z
d3x eix�q�.x/ ' 1 � 1

6
Q2hr2i C : : : (3.16)

1See for instance, http://www.jlab.org/exp_prog/12GEV_EXP/.

http://www.jlab.org/exp_prog/12GEV_EXP/
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The charge radius of the nucleon is then defined by

hr2i D �6 dGE.Q
2/

dQ2

ˇ̌
ˇ̌
Q2D0

: (3.17)

We note here that there has been a lot of recent activity surrounding r D
q
hr2Ei.

Electron-proton scattering experiments found that the rms charge radius of the
proton is r D 0:875.8/.6/ fm, in good agreement with the atomic-hydrogen
Lamb-shift experiments and QED calculations [140]. Recent muonic-hydrogen
Lamb-shift measurements, however, indicate r D 0:84184.67/ fm, showing a 5

difference [141], which has yet to be resolved.

3.2.2 Deep-Inelastic Scattering

In the previous section, we saw how elastic electron-proton scattering can provide
a framework in which to determine the electromagnetic form factors of the proton.
While elastic scattering occurs at small enough energies so that the final proton
would stay intact, we now consider an experimental process that occurs with high
enough energy that the proton is “smashed” into many fragments. This is known as
deep-inelastic scattering (DIS). The DIS process is dominated by a single quark in
the nucleon which is “knocked out” by a virtual photon (see Fig. 3.2).

As in case of elastic scattering, let us start with the expression for the S-matrix
for deep-inelastic scattering:

S D .2�/4ı4.k C P � P 0 � k0/Nu.k0/.�ie��/u.k/
�i
q2
hX j.ie/J �jP i: (3.18)

Fig. 3.2 Deep-inelastic
scattering
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We have here conservation of momentum ı4.k C P � P 0 � k0/, a leptonic piece
Nu.k0/.�ie��/u.k/ which can be calculated in perturbation theory, and a hadronic
piece hX j.ie/J �jP i. After smashing the initial proton with the probe, it is going to
break up into many fragments, and for an inclusive process we need to include in
the hadronic piece all possible final states, which we label X . The inclusive cross
section can be written in the following form:

d


d˝dE
D ˛2

Q4

E 0

E
`��W

��: (3.19)

Here `�� is the leptonic tensor, W �� is the hadronic tensor which itself is a square
of the matrix element from Eq. (3.18), and we have here a sum over all possible final
states

W�� D 1

4�

X
X

hP jJ�jXihX jJ�jP i.2�/4ı4.P C q � PX/: (3.20)

Since the final states are summed over, the hadronic tensor W �� only depends on
the initial proton momentumP and photon momentum q. Using Lorentz symmetry,
parity and time-reversal invariance and current conservation, we can express this
hadronic tensor in terms of two invariant tensors

W�� D W1

�
�g�� C q�q�

q2

�
(3.21)

CW2

M2

�
P� � q� .P � q/

q2

��
P� � q� .P � q/

q2

�
;

where W1 and W2 are the so-called structure functions of the proton which depend
on two variables: the 4-momentum transfer squared

Q2 D �q2; (3.22)

and the energy transferred to the nucleon by the scattering electron

� D P � q
M

: (3.23)

The early data from SLAC indicated that these structure functions W1 and W2

are nearly independent of Q2 when plotted as a function of the dimensionless
combination

x D � q2

2P � q D
Q2

2M�
: (3.24)

This effect is known as Bjorken scaling, and x is called the Bjorken scaling variable,
although as we will discuss later, small scaling violations are observed at small x.
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3.2.2.1 Parton Model

If we work at fixed x, the limit of Q2 ! 1 is known as the Bjorken limit. The
effect of Bjorken scaling in this limit led Feynman to introduce the “parton model”.
According to his idea, the inelastic electron-proton scattering is a sum of elastic
scatterings of the electron on free partons within the proton (the term parton refers
to any particle with no internal structure). A key factor for investigating the proton
substructure is the wavelength of the probe

� � 1p
Q2

; (3.25)

and, of course, at large momentum transfer we are going to have higher resolution;
Fig. 3.3 represents it diagrammatically. If Q2 is small (i.e. the wavelength is large),
then the probe will only resolve the proton as a whole, but if we increase the value of
Q2 (decrease the wavelength of the probe), this means that we will be able to resolve
quantities inside of the hadron, so the probe will “see” quarks rather than a proton.
This picture is also valid for a fast-moving nucleon, i.e. the infinite-momentum
frame.

In the Bjorken limit, one defines the functions

F1.x/ D lim
Q2!1

W1.Q
2; �/; (3.26)

F2.x/ D lim
Q2!1

�

M
W2.Q

2; �/: (3.27)

And in Feynman’s parton model, the structure functions are sums of the parton
densities fi constituting the proton:

F1.x/ D 1

2

X
i

e2i fi .x/; (3.28)

F2.x/ D x
X
i

e2i fi .x/ ; (3.29)

Q2 small

e-

e-
Q2 large

e-

e-

Fig. 3.3 Large momentum transfer leads to higher resolution. The left diagram represents
resolving a proton at small Q2, while the right diagram has a Q2 high enough for investigating
proton substructure (quarks)
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where for quarks, the charge ei is also included. fi is the probability that the struck
parton, i , carries a fraction, x, of the proton momentum, and is called a parton
distribution function (PDF). Since the total probability must be 1, we have

X
i

Z 1

0

dx xf i .x/ D 1: (3.30)

Results from DIS tell us that the fraction of the nucleon momentum carried by
the quarks

R
dx xq.x/ is only about 50% (here q.x/ D fq.x/). This gives us an

idea that gluons must play a very important role in the structure of the nucleon by
carrying roughly half of its momentum. In fact, much of our knowledge about QCD
and the structure of the nucleon has been derived from DIS experiments. They told
us that there are two up and one down valence quarks with electric charge 2=3 and
�1=3 in the proton; the number of quarks is infinite because the integral over parton
densities

R
dx q.x/ does not seem to converge, so there is an infinite number of

quark-antiquark pairs living inside of the proton.

3.2.2.2 Parton Distribution Functions

Let us take a look at how these PDFs might look. For a point nucleon (i.e. if we
consider the nucleon as a single parton with no internal structure which carries all
momentum), F2 is a delta function at x D 1 (Fig. 3.4). If the nucleon is made up
of three quarks which equally share the momentum, then each quark carries 1=3 of
the momentum, and we will have a delta function at 1=3, as in Fig. 3.5. If the three
quarks are interacting, which means that they are exchanging some gluons, then they
can share momentum. So the PDF is going to be smeared around the peak of 1=3
(see Fig. 3.6). Finally, we should consider the case with sea quarks. Here, one quark
emits a gluon which turns into quark-antiquark pair, and then all valence quarks in
q Nq loop must have lower x than the original quark. Therefore, in Fig. 3.7 we should
see an enhancement at small x.

Fig. 3.4 PDF for a point
nucleon

F2(x)
x1

Fig. 3.5 PDF for a nucleon
with three quarks

F2(x)

x1/3
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Fig. 3.6 PDF for three
interacting quarks

F2(x)

x

Fig. 3.7 Enhancement at
small x for the nucleon with
sea quarks F2(x)

x

The proton contains two up and one down quarks which are termed “valence”
quarks: uv.x/, dv.x/. It is possible that a valence quark radiates a gluon which then
turns into a quark-antiquark pair which are termed “sea” quarks, and we are going
to call PDFs associated with us.x/, ds.x/, ss.x/. Then we can write the proton and
neutron structure functions as following (ignoring heavy quarks):

F
p
2 .x/ D x

	
4

9
Œup.x/C Nup.x/�C 1

9


dp.x/C Ndp.x/�C 1

3
Œsp.x/C Nsp.x/�



;

(3.31)

F n
2 .x/ D x

	
4

9
Œun.x/C Nun.x/�C 1

9


dn.x/C Ndn.x/�C 1

3
Œsn.x/C Nsn.x/�



;

(3.32)

where total PDF of any particular flavour in Eqs. (3.31), (3.32) is

q � qv C qs: (3.33)

Under isospin flip u $ d and p $ n, assuming charge symmetry means that the
distribution of the up quarks in the proton is the same as distribution of the down
quarks in the neutron:

u.x/ � up.x/ D dn.x/; (3.34)

and the distribution of the down quarks in the proton is the same as the distribution
of the up quarks in the neutron:

d.x/ � dp.x/ D un.x/: (3.35)

If we also assume that different flavours .u; d; s/ of the quarks occur with equal
probability in the sea, then we can write down this total contribution S :

S � us D Nus D ds D Nds D ss D Nss: (3.36)
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So we can now write the proton and neutron structure functions in terms of the
valence u in the proton and the valence d in the proton, and a sea quark contribution:

F
p
2 .x/ D x

	
1

9
Œ4uv.x/C dv.x/�C 4

3
S.x/



; (3.37)

F n
2 .x/ D x

	
1

9
Œ4dv.x/C uv.x/�C 4

3
S.x/



: (3.38)

We expect that at small x (x 
 1) the sea quarks should dominate, so that

F n
2

F
p
2

! 1; (3.39)

while at large x (x ! 1) the valence quarks should dominate (and uv.x/ > dv.x/

since there are two up versus one down valence quarks in the proton), then

F n
2

F
p
2

! 1

4
: (3.40)

And this is exactly what is seen in DIS experiment results.
Recall the momentum sum rule:

X
i

Z 1

0

dx xf i .x/ D 1; (3.41)

but electron-proton DIS experiments find the light-quark contributions to be roughly

Z
dxxŒu.x/C Nu.x/� � 0:36; (3.42)

Z
dxxŒd.x/C Nd.x/� � 0:18: (3.43)

This tells us that almost half of the proton momentum is carried by electrically
neutral partons. These experiments were repeated by using neutrino scattering, and
they indicated that these neutral partons do not interact weakly (i.e. are not quarks),
therefore the missing momentum has to be carried by gluons. The need for inclusion
of gluons in the parton model is also evidenced by the scaling violations at finiteQ2

discussed in Sect. 3.2.2.
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3.2.3 Neutron Beta Decay

We all know that free neutrons are unstable: they are stable inside nuclei, but if a
neutron exists outside of the nucleus, then it has a lifetime of approximately 15min.
This is because it can decay to a proton by the weak interaction

n! pe� N�e ; (3.44)

emitting aW boson which in turn decays into an electron and electron antineutrino.
Neutron decay is the simplest way of studying the weak interaction. The decay

rate of the neutron is proportional to the matrix element of the weak V�A current:

hp.p0; s0/j.V� �A�/jn.p; s/i D (3.45)

Nup.p0; s0/
	
��f1.q

2/C i 
��q
�

2M
f2.q

2/C q�

2M
f3.q

2/

�
�
���5g1.q

2/C i 
��q
�

2M
�5g2.q

2/C q�

2M
�5g3.q

2/

�

un.p; s/:

Because of the tiny mass difference between the proton and the neutron

Mn �Mp ' 1:3 MeV ; (3.46)

the momentum transfer here is so small that all the terms proportional to q may be
dropped, and we only need to consider to first order the contribution from the f1
and g1 terms. By convention, we call the value of f1 at zero momentum gV , and the
corresponding value of g1, gA:

gV D f1.0/; gA D g1.0/: (3.47)

According to the conserved vector current (CVC) hypothesis, which says that
the vector part of this weak V �A current is the same as the vector part of the
electromagnetic current, under isospin symmetry this f1.0/, or gV , will give us the
charge of the system, which is one .gV D 1/. There also exists the so-called Adler-
Weisberger relation which predicts gA D 1:26. So how do we extract gA from
experiment? The decay rate for a neutron at rest and with spin pointing in the sn
direction is given by

dR

dped˝ed˝N�
D G2

F jVudj2
.2�/5

Œ˛ C ˇve � vN� C �sn � ve C ısn � vN�� p2e .Emax � Ee/2:
(3.48)

Here ve and vN� are the velocities of the final electron and electron antineutrino,
respectively, GF is Fermi constant, and Vud is a CKM matrix element. E is the
energy of the electron, pe is the momentum of the electron, and Emax is the
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difference between the neutron and proton masses, which provides a bound on the
energy spectrum of the electron:

Emax DMn �Mp ' 1:3 MeV: (3.49)

So the decay rate is defined then in terms of the quantities ˛, ˇ, � and ı described
as functions of gV and gA:

˛ D g2V C 3g2A; ˇ D g2V � g2A;
� D 2.gAgV � g2A/; ı D 2.gAgV C g2V /; (3.50)

allowing us to extract gA from this experiment. We can see that even for an
unpolarised neutron (in this case the � and ı terms are zero, and we only have
the ˛ and ˇ terms which are expressed in terms of squares of gA and gV ), we
can define jgA=gV j through an accurate determination of the angular correlation
between the outgoing electron and electron antineutrino. To determine the sign of
gA, spin-dependent measurements are required; in other words, we want at least one
of the � or ı terms to be nonzero since they are proportional to a single power of gA.
Current best determination of jgA=gV j provided by Particle Data Group (PDG2012)
gives jgA=gV j D 1:2701.25/.

3.2.3.1 Axial Form Factor

Considering the general case of the matrix element of the weak V�A current, away
from q2 D 0, will give us access to the form factors as functions of q2. If we consider
only the axial-vector part of the weak current between the neutron and proton states
from Eq. (3.45), we find

hp.p0; s0/jA�.q/jn.p; s/i D Nup.p0; s0/
�
���5GA.q

2/C i
���5 q�
2M

GT .q
2/

C �5 q
�

2M
GP .q

2/

�
un.p; s/: (3.51)

Similarly to Eq. (3.10) for electromagnetic form factors, this is written in terms of
Lorentz invariant form factors. The first term, which we call nowGA.q2/, is the axial
form factor, the third term, GP .q2/, is the induced pseudoscalar form factor, and
the second term, the tensor form factor GT , vanishes if charge symmetry assumed,
up D dn. The partially conserved axial current relation (PCAC) tells us that the
divergence of the matrix element of the axial-vector current is proportional to m2

�

which, as we go to chiral limit, should vanish:

@�A
� / m2

�

mq!0����! 0 ; (3.52)
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i.e. the axial current is only conserved in the chiral limit. This is, in general, not true
for Eq. (3.51). However if GP has a pion pole

GP .q
2/! 4MNf�g�NN.q

2/

�q2 Cm2
�

; (3.53)

and GA takes the following form in terms of g�NN and the pion decay constant f�

MNGA.q
2/ D f�g�NN.q

2/; (3.54)

then the matrix element in Eq. (3.51) satisfies the PCAC relation. Then at q2 D 0

we get the so-called Goldberger-Treiman relation

MNgA D f�g�NN : (3.55)

3.2.3.2 Axial Charge gA

As discussed above, the axial charge is defined as the value of the axial form factor
at q2 D 0, gA D GA.q

2 D 0/. This presents an ideal quantity for benchmark
lattice calculations of nucleon structure. The fact that it is defined at zero momentum
guarantees that calculations are statistically clean. This is also an isovector quantity
since this matrix element between the proton and neutron with a Nud current is related
under charge symmetry to the u� d proton matrix element

hpjNu���5d jni D hpjNu���5u � Nd���5d jpi; (3.56)

and therefore, disconnected contributions cancel. So in principle it should be
possible to perform precision lattice calculations of gA which can be compared to
the experimental value.

3.3 Determining Matrix Elements on the Lattice

Here we outline the procedure required for calculating matrix elements such as those
in Eqs. (3.51) and (3.10). We start with introducing lattice three-point functions
and the sequential-source technique used for calculating them. We then show how
to extract the relevant matrix elements from these three-point functions through
constructing ratios of lattice three- and two-point functions.
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3.3.1 Lattice Three-Point Functions

We start our discussion by introducing the lattice nucleon three-point function

G.t; � Ip; p0/ D
X
x2;x1

e�ip0�.x2�x1/e�ip�x1�ˇ˛ � (3.57)

� h˝jT f�˛.x2; t/O.x1; �/ N�ˇ.0/gj˝i ;
which is also illustrated in Fig. 3.8, where a particle is created at t D 0 by
the creation operator N�ˇ.0/, interacts with the generic current O.x1; �/ at some
Euclidean time � and is annihilated at some time t by the annihilation operator
�˛.x2; t/. In our case the creation (annihilation) operator has the quantum numbers
of the proton. A time-ordered product ensures that everything happens in correct
order. The �ˇ˛ matrix is the spin-projection operator,˝ represents the vacuum state
and, finally, the Fourier transform projects the particle to a definite momentum state.
Inserting a complete set of states I D P

B.
0/;p.

0/;s.
0/ jB.0/; p.

0/; s.
0/ihB.0/; p.

0/; s.
0/j

before and after the current operator and exploiting the translational invariance
�.x; t/ D e OHte�i OP �x�.0/ei OP �xe� OHt , we find

G.t; � Ip; p0/ D
X
B;B0

X
s;s0

e�EB0
.p0/.t��/e�EB.p/��ˇ˛ �

˝
˝ j�˛.0/jB 0; p0; s0˛ ˝B 0; p0; s0 jO.q/jB;p; s˛ ˝B;p; s ˇ̌ N�ˇ.0/ˇ̌˝˛ ;

(3.58)

where EB.p/ denotes the energy of the baryon B with momentum p. As the
Euclidean time evolves, 0 
 � 
 t , excited states are exponentially suppressed
and the ground-state proton dominates

G.t; � Ip; p0/ D
X
s;s0

e�Ep0
.t��/e�Ep��ˇ˛ �

˝
˝ j�˛.0/jN.p0; s0/

˛ ˝
N.p0; s0/ jO.q/jN.p; s/˛ hN.p; s/j N�ˇ.0/ j˝i ;

(3.59)

where we have simplified our notation andEp now denotes the energy of the proton
with momentum p D jpj.

Fig. 3.8 Quark-flow diagram
for a proton three-point
function described in
Eq. (3.57)
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3.3.1.1 Three-Point Functions at the Quark Level

We now wish to derive a form for a lattice three-point function in terms of quark
propagators. We will start with the simple case of the pion for which we will use the
standard interpolating operator

�.x/ D Nd.x/�5u.x/; (3.60)

where Nd.x/ and u.x/ are the quark fields and �5 gives the correct quantum numbers
for a pseudoscalar meson. Inserting the local current operator,

O.x/ D Nq.x/� q.x/; (3.61)

where � stands for any combination of � -matrices and derivatives (e.g. �� for the
electromagnetic current), the three-point function of pion is then

G.t; � Ip; p0/ D
X
x2;x1

e�ip0�.x2�x1/e�ip�x1

˝
˝
ˇ̌
T
˚� Nd.x2/�5u.x2/Nu.x1/� u.x1/Nu.0/�5d.0/

�ˇ̌
˝
˛
;

(3.62)

where we are first considering the u-quark contribution to the full three-point
function. Writing the colour (Latin) and Dirac (Greek) indices explicitly,

G.t; � Ip; p0/ D
X
x2;x1

e�ip0�.x2�x1/e�ip�x1 �
D
˝jT f� Ndaˇ .x2/�5ˇ�ua� .x2/Nub�.x1/��ıubı .x1/Nuc�.0/�5�˛d c˛ .0/gj˝

E
;

(3.63)

we now perform all possible Wick contractions,

G.t; � Ip; p0/ D
X
x2;x1

e�ip0�.x2�x1/e�ip�x1�
˚
S ca
d˛ˇ.0; x2/�

5
ˇ�S

ab
u��.x2; x1/��ıS

bc
uı�.x1; 0/�

5
�˛

� S ca
d˛ˇ.0; x2/�

5
ˇ�S

ac
u��.x2; 0/�

5
�˛S

bb
uı�.x1; x1/��ı

�
;

(3.64)

where Sq stands for the quark propagator. Then we take the Dirac and colour traces
to obtain

G.t; � Ip; p0/ D
X
x2;x1

e�ip0�.x2�x1/e�ip�x1

˚
TrŒSd .0; x2/�5Su.x2; x1/� Su.x1; 0/�5�

� TrŒSd .0; x2/�5Su.x2; 0/�5�TrŒSu.x1; x1/� �
�
;

(3.65)
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and using the �5-hermiticity, S.x; 0/ D �5S.0; x/�5, we end up with

G.t; � Ip; p0/ D
X
x2;x1

e�ip0�.x2�x1/e�ip�x1

˚
TrŒSd .x2; 0/Su.x2; x1/� Su.x1; 0/�

� TrŒSd .x2; 0/Su.x2; 0/�TrŒSu.x1; x1/� �
�
:

(3.66)

We can a similar result for the d -quark contribution Nd� d , which, however, in the
isospin limit is identical to that for the u-quark. The first term of Eq. (3.66) stands
for the usual connected diagram whereas the Su.x1; x1/ in second term indicates a
quark loop and a disconnected diagram.

So in this case we have found that there are two dominant terms needed to
calculate the full pion three-point function; however, due to the number of quark
fields, it gets complicated when we consider the proton.

The interpolating operator of proton is

�˛.x/ D �abc
�
uTa.x/C�5d

b.x/
�

uc˛.x/ ; (3.67)

leading to the three-point function for, e.g., the u-quark current insertion,

G� .t; � Ip; p0/ D
X
x2;x1

e�ip0�.x2�x1/e�ip�x1� �abc�a
0b0c0�

D
˝
ˇ̌
ˇT
n�

uTa.x2/C�5d
b.x2/

�
uc˛.x2/Nu.x1/Ou.x1/Nuc0

.0/�
� Ndb0

.0/C�5 NuTa0

.0/
�oˇ̌
ˇ˝

E
;

(3.68)

where C is the charge-conjugation operator. After all possible connected Wick
contractions we can write this three-point function in terms of up and down pieces,

G� .t; � Ip; p0/ D quC
u
� .t; � Ip; p0/C qdC d

� .t; � Ip; p0/; (3.69)

where for the electromagnetic current we have explicitly included the electric
charges of the up and down quarks .qu;d /, and C u

� .t; � Ip; p0/ and Cd
� .t; � Ip; p0/

are defined as

C u;d
� .t; � Ip; p0/ �

X
x1

e�iq�x1 � (3.70)

D
Tr
h
˙

u;d
� .0; 0Ix1; � Ip0; t/O.x1; �/S.x1; � I 0/

iE
;
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where q D p0 � p is the momentum transfer. The ˙u;d
� term is the combination of

propagators shown in Fig. 3.9 and written as

˙u;d
� .0; 0Ix1; � Ip0; t/ D

X
x2

Su;d
� .x2; t I 0; 0Ip0/S.x2; t Ix1; �/; (3.71)

where Su
� and Sd� are

S
uIa0a
� .x2; t I 0; 0Ip0/ D e�ip0 �x2�abc�a

0b0c0�n QSd Ibb0

.x2; t I 0; 0/SuIcc0

.x2; t I 0; 0/�

C TrD

h QSd Ibb0

.x2; t I 0; 0/SuIcc0

.x2; t I 0; 0/
i
�

C � SuIbb0

.x2; t I 0; 0/ QSd Icc0

.x2; t I 0; 0/
CTrD

h
� SuIbb0

.x2; t I 0; 0/
i QSd Icc0

.x2; t I 0; 0/
o
;

(3.72)

S
d Ia0a
� .x2; t I 0; 0Ip0/ D e�ip0 �x2�abc�a

0b0c0�n QSuIbb0

.x2; t I 0; 0/ Q� QSuIcc0

.x2; t I 0; 0/

CTrD

h
� SuIbb0

.x2; t I 0; 0/
i QSuIcc0

.x2; t I 0; 0/
o
;

(3.73)

and we have defined QS � C�5S�5C . We also note that TrD indicates a trace of
Dirac indices, while the colour indices are still explicit.

Now that we have expressed the three-point function in terms of quark propaga-
tors, we can calculate it by computing and contracting the propagators. However,
because of the S.x2; t Ix1; �/ propagator and the presence of sums over x1, x2 we
can not calculate the quantities given in Eq. (3.70) directly. The workaround is to use
the sequential-source technique in which we first compute the ordinary propagators
S.x; 0/ and then construct the sources SuIa0a

� or Sd Ia0a
� , as described in Eqs. (3.72)

G

t0
S

G

0 t
S

Fig. 3.9 Diagrammatic view of the ˙� term for up (left) and down (right) quark contributions.
The blue S combination corresponds to the Su;d

� .x2; t I 0; 0I p0/ piece and the black G stands for
S.x2; t I x1; �/. Solid (dashed) lines indicate u.d/-quark propagators
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and (3.73). The sequential propagator˙u;d
� .0; 0Ix1; � Ip0; t/ is then computed via a

second inversion by solving the linear system of equations

X
x1

M.x2; x1/�5˙
u;d
� .0; 0Ix1; � Ip0; t/ D �5Su;d

� .x2; t I 0; 0Ip0/: (3.74)

Contracting the sequential propagator with the operator O.x1; �/ and an ordinary
propagator from source to current S.x1; 0/, we can construct the three-point
function as in Eq. (3.70).

With this approach we have inverted the sequential propagator through the sink
by fixing the final-state particle and sink momentum. This allows us to investigate
the momentum dependence of the form factors for different insertion currents, since
the sum over x1 is performed last. Alternatively, we could have chosen to invert the
sequential source through the current, leaving the choice of final-state particle free;
however, we would need separate a inversion for each choice of q and operator.
The advantage of this method, however, is that the choice of quark sector, hadron
boost and polarisation are all free to be determined after the sequential propagator
has been calculated. Further information can be found in [142]. Choosing between
these two approaches depends on what we are interested in computing. Mapping
out the q2-dependence of various form factors for a single hadronic state would be
suited to choosing the “sequential source through the sink” method, as described
in Eqs. (3.70)–(3.74), while comparing results for a single operator for a number of
different hadronic states would be more suited to the “sequential source through the
current method”.

3.3.2 Extracting Matrix Elements

Recall the nucleon three-point function given in Eq. (3.57). Since we are interested
in determining the matrix element hN.p0; s0/ jO.q/jN.p; s/i, we should somehow
cancel the exponential time-dependent factors and wavefunction amplitudes, i.e.
h˝j�˛.0/jN.p0; s0/i and hN.p; s/j N�ˇ.0/j˝i, which are, in general, momentum
dependent. For this purpose we will use the nucleon two-point function,

G2.t;p/ D
X
s

e�Ept�ˇ˛ h˝ j�˛jN.p; s/i
˝
N.p; s/

ˇ̌ N�ˇ ˇ̌˝˛ ; (3.75)

and consider the combination of the nucleon three- and two-point functions

R.t; � Ip0;pIO/ D G� .t; � Ip0;pIO/
G2.t;p0/

�
G2.�;p

0/G2.t;p0/G2.t � �;p/
G2.�;p/G2.t;p/G2.t � �;p0/

� 1
2

:

(3.76)
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With periodic or anti-periodic boundary conditions in time, the two-point function
in Eq. (3.75) can be written in terms of nucleon spinors

G2.t;p/ D
X
s

p
Zsnk.p/ NZsrc.p/

2Ep

Tr ŒNu.p; s/� u.p; s/�
h
e�Ept C e�E0

p.T�t /i

C v-spinor terms with opposite parity, (3.77)

where the Zsrc(snk) is the wavefunction overlap with the proton at the source (sink)
and T is the lattice time extent. Using the relation for spinors in Euclidean space

X
s

u.p; s/Nu.p; s/ D �i =p Cm ; (3.78)

together with the projection matrix �4 D .1C �4/=2, to maximise the overlap with
the positive-parity forward-propagating state we get

G2.t;p/ D
q
Zsnk.p/ NZsrc.p/

"�
Ep Cm
Ep

�
e�Ept C

 
E 0
p Cm0

E 0
p

!
e�E0

p.T�t /
#
:

(3.79)

Similarly, for the three-point function, when 0
 � 
 t 
 1
2
T , we get

G� .t; � Ip0;pIO/ D
q
Zsnk.p0/ NZsrc.p/F.�;J /e�Ep0

.t��/e�Ep� ; (3.80)

where

F.�;J / D 1

4
Tr

��
�4 � i p0 � �

Ep0

C m

Ep0

�
J
�
�4 � i p � �

Ep
C m

Ep

��
: (3.81)

The nucleon matrix elements we are interested in will now have the form

hN.p0; s0/jO.q/jN.p; s/i D Nu.p0; s0/J u.p; s/; (3.82)

where we have labeled the combination of gamma matrices and Lorentz-invariant
form factors sandwiched between two nucleon spinors generically as J . For
example, for the electromagnetic current we have

J D ��F1.Q2/C i
�� q�
2M

F2.Q
2/ : (3.83)
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3.3.2.1 Example 1: Form Factors

As an example, if we choose the unpolarised projection matrix �4, the electromag-
netic current as our operator, and p D p0 D 0, then the term proportional to F2.Q2/

in Eq. (3.83) vanishes and we have

hN.p0; s0/jJ�.0/jN.p; s/i D Nu.p0; s0/��u.p; s/F1.Q
2 D 0/ : (3.84)

Hence we are in a position to determine F1.Q2 D 0/.
First of all, we should remember that this matrix element is defined in Minkowski

space while we work in Euclidean space, so we need to Euclideanise it using rela-
tions for transforming Minkowski gamma matrices to Euclidean gamma matrices,
and we also need to transform our momenta:

�M0 D �E4 ; �Mi D �i�Ei ; pE4 D ipM0 � iE.p/; pEi D �pMi : (3.85)

After Euclideanisation we can see that the matrix element (3.10) can be written in
the form

hN.p0; s0/j Nq�E� qjN.p; s/i D Nu.p0; s0/�E� u.p; s/F1.Q
2/ (3.86)

CNu.p0; s0/

E��q

E
�

2M
u.p; s/F2.Q

2/;

which looks very similar to Eq. (3.10), except for a factor of i in the second term.
Recalling that in our current example qE� D 0, we can rewrite this as

hN.p0; s0/j Nq�E� qjN.p; s/i D Nu.p0; s0/�E� u.p; s/F1.Q
2 D 0/ ; (3.87)

and Eq. (3.83) reduces to

J D ��F1.Q2 D 0/ ; (3.88)

which we can substitute into Eq. (3.81). If we insert the time component and the
spatial components of the vector of gamma matrices separately, we will get (after
taking the trace) the following:

F.�4; �4/ D 1

2EpEp0


.Ep Cm/.Ep0 Cm/C p0 � p� ; (3.89)

F.�4; �i / D �i
2EpEp0


.Ep Cm/p0 C .Ep0 Cm/p� : (3.90)
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If we now take the specific case relevant to our example where both source and sink
momenta are zero (p0 D p D 0), then we will get

F.�4; �4/ D 2 F1.Q2 D 0/ ; (3.91)

while the spatial components vanish

F.�4; �i / D 0 : (3.92)

Now we can go back to the ratio of three- and two-point functions (Eq. (3.76))
and, after working it through, we will find that it simply provides the factorr

Ep0
Ep

.Ep0
Cm/.EpCm/ in terms of energies and mass, times the function F.�;J .q//:

R.t; � Ip0;pIO/ D
s

Ep0Ep

.Ep0 Cm/.Ep Cm/F.�;J .q//
	
0
 � 
 t 
 1

2
T



:

(3.93)

And if we look, again, at our very specific case:

�4 D 1

2
.1C �4/; O D V4 � �4; p0 D p D 0; (3.94)

then the ratio in Eq. (3.93) will give us directly F1 at Q2 D 0:

R.t; � Ip0;pIO/ D F1.q2 D 0/: (3.95)

We can also choose certain combinations of parameters and kinematics which
provide access to the Sachs form factors,

R.t; � I 0;pI �4; �4/ D K
�
F1.q

2/� Ep �M
2M

F2.q
2/

�
D KGE.q2/; (3.96)

R.t; � I 0;pI �i ; �4/ D �iK
qi

Ep CM GE.q
2/; (3.97)

R.t; � I 0;pI �i ; �j / D �iK�ijk
qk

Ep CM GM.q
2/; (3.98)

where K D p
.Ep CM/=.2Ep/ and �j D i.1 C �4/�5�j =2. In Fig. 3.10 we

show some results from [143] for the ratio in Eq. (3.96) for several choices of
momentum transfer. As we can clearly see, the ratio decreases in size as we increase
the momentum transfer, indicating that the form factor GE.q2/ falls as a function
of q2.

More generally, we can consider all combinations that contribute at a fixed q2,
construct a set of simultaneous equations and solve for the two unknowns, F1.q2/
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Fig. 3.10 Ratio of three- and two-point functions from Eq. (3.96) from [143]
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Fig. 3.11 F
.u�d/
1 .q2/ for several values of 250 MeV < m� < 1:5 GeV from [144]

and F2.q2/. As an example, we show in Fig. 3.11 some lattice results for F1.q2/
from [144] for a range of pion masses 250 MeV < m� < 1:5 GeV compared to a
parameterisation of experimental data denoted by the shaded band [145]. As can be
seen, the lattice results lie above the experimental band, although this is now known
to be due to the large pion masses used in many lattice simulations [146].

3.3.2.2 Example 2: gA

In order to compute the nucleon axial charge, gA, we need access to the matrix
element given in Eq. (3.51) in the forward (q2 D 0) limit,

hpjNu���5d jni D Nu.p0; s0/���5u.p; s/gA : (3.99)
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As we did in the previous section for the electromagnetic form factors, we wish to
isolate this matrix element from the lattice three-point function (Eq. (3.57)). In other
words, we wish to determine the matrix element Eq. (3.82) for the particular case
where the operator O is the axial current and the Dirac structure on the right-hand
side of Eq. (3.99) shows that in this particular case J in Eq. (3.82) is simply

J D ���5 gA : (3.100)

We can now substitute this into F.�;J / defined in Eq. (3.81). For unpolarised
gamma nucleons, i.e. � D �unpol, we find

F.�unpol; �4�5/ D 0; F.�unpol; �i �5/ D 0: (3.101)

Obviously, we need a different choice of projection matrix. In order to polarise our
nucleon states so that they have definite spin in a particular direction s, we will need
to use the spin-projectors

�pol D 1

2
.1C �4/i�5� � s : (3.102)

Re-evaluating F.�;J / in Eq. (3.81) with this choice, we find for time and spatial
components of the axial current

F.�pol; �4�5/ D � 1

2EpEp0


.Ep Cm/p0 � sC .Ep0 Cm/p � s� ; (3.103)

F.�pol; �i�5/ D i

2EpEp0


.Ep Cm/.Ep0 Cm/sC (3.104)

.p0 � s/pC .p � s/p0 � .p0 � p/s�
i
;

which now depend not only on the energy and momenta of the nucleon states, but
also on the direction of its spin.

In particular, we notice that for the spatial component (Eq. (3.104)) we have
terms that are proportional directly to p and p0, but there is also a term .Ep C
m/.Ep0 C m/s which is not proportional to momentum but proportional to the
nucleon’s energy and the direction of its spin. So even in the case when both p

and p0 are zero we have a nonzero contribution

F.�pol; �i �5/ D 2isi ; (3.105)

and gA can be determined by choosing the direction of axial current to be the same
as the direction of nucleon polarisation. For example, if we choose the polarisation
of the nucleon to be in the z-direction, then we need to compute lattice three-point
functions with

�pol D �3 D 1

2
.1C �4/i�5�3; O D Nq�3�5q : (3.106)
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Fig. 3.12 Summary of lattice calculations of gA by H.-W. Lin [147]

With these particular choice of kinematics (p D p0 D 0), the ratio defined in
Eq. (3.76) simplifies to provide a direct determination of gA

R.t; � I 0; 0I �3�5; �3/ D G�3.t; � I 0; 0I �3�5/
G2.t; 0/

D igA ; (3.107)

Due to its status as a benchmark calculation for nucleon structure simulations,
gA has been heavily investigated on the lattice. In Fig. 3.12 we show a summary
of calculations by several lattice collaborations compiled by H.-W. Lin [147] in
2012. It is clear that there is broad agreement between the many different groups,
with the bulk of the results lying about 10 % below the experimental value. This
discrepancy has attracted much attention recently with several arguments such as
excited state contamination [148] and finite volumes effects [149] being put forward
as explanations. We will not go into a discussion regarding these issues here.

3.3.3 Moments of Structure Functions

In order to proceed towards lattice calculations of matrix elements relevant to
structure functions, we need to consider what is called the moments of the structure
functions. Moments are integrals with respect to the momentum fraction x, weighted
with some power of x, and as we increase this power, this increases the moment, e.g.
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Z 1

0

dxxn�2F2.x;Q2/ D ES
F2Ivn.M

2=Q2; gS/vSn .M/CO.1=Q2/: (3.108)

These moments can be separated at some renormalisation scale M in a scheme S
into a perturbative part, which is called a Wilson coefficient (E) and calculable in
perturbation theory, and a nonperturbative part which we label vn, where n is the
power of the moment. These vn come from forward proton matrix elements of local
operators, and hence are amenable to lattice calculations

D
N.p; s0/

ˇ̌
ˇOf�1:::�ng

q

ˇ̌
ˇN.p; s/

E
D 2Nu.p; s0/v.q/n pf�1:::�ngu.p; s/; (3.109)

where f: : :g indicates symmetrisation of indices and the subtraction of traces.
Expressions similar to Eq. (3.108) exist for moments of other structure func-

tions:

• unpolarised: F1/F2/F3 $ vn,
• polarised: g1 $ an, g2 $ an � dn,
• and transversity: h1 $ hn.

As our first example, we consider an operatorO which contains a gamma matrix,
similar to the electromagnetic current, and one or more covariant derivatives, where
the number of derivatives depends on moment we are looking at

Of�1:::�ng
q D .i/n�1 Nq��1 !D �2 : : :

 !
D �nq; (3.110)

 !
D D 1

2

��!
D � �D

�
: (3.111)

On the lattice the covariant derivatives take their usual definitions by a finite
difference

.
�!
D�  /.x/ D 1

2

h
U�.x/ .x C a O�/� U 

�.x � a O�/ .x � a O�/
i
; (3.112)

. 
 �
D�/.x/ D 1

2

h
 .x C a O�/U 

�.x/ �  .x � a O�/U�.x � a O�/
i
: (3.113)

The terms O.1=Q2/ in Eq. (3.108) are higher-twist contributions, which are
suppressed at large Q2. So our operators O here are all of twist two and provide
the dominant contribution in the deep-inelastic (large-Q2) limit.

Similarly, for the moments of polarised structure functions we consider a
polarised nucleon state and the matrix element is now dependent on the orientation
of the nucleon spin, s�,

D
N.p; s0/

ˇ̌
ˇO5If�1:::�ng

q

ˇ̌
ˇN.p; s/

E
D Nu.p; s0/

a
.q/
n�1

nC 1s
f�1p�2 : : : p�ngu.p; s/ :

(3.114)
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Here the operator contains a �5, so this is the axial version of Eq. (3.110)

O5If�1:::�ng
q D .i/n�1 Nq��1�5 !D �2 : : :

 !
D �nq: (3.115)

3.3.3.1 Moments of PDFs

The interpretation of vn in terms of moments of PDFs q.x/ is

v.q/n D
Z 1

0

dxxn�1 .q.x/C .�1/n Nq.x// D hxn�1iq ; (3.116)

where q.x/ ( Nq.x/) is the probability to find a quark (antiquark) with momentum
fraction x. Similarly, in the polarised case we have an which are simply the moments
of polarised PDFs:

a.q/n D 2
Z 1

0

dx xn .�q.x/C .�1/n� Nq.x// D 2hxni�q : (3.117)

�q.x/ here are written as

�q.x/ D qC.x/ � q�.x/; (3.118)

where qC.x/ (q�.x/) is the “probability” of finding a quark with momentum
fraction x and the direction of the helicity equal (opposite) to that of the proton.
In particular,

1

2
a
.q/
0 D h1i�q D �q (3.119)

is the fraction of the nucleon spin carried by quarks of flavour q. Also, the axial
charge gA is just

gA D �u ��d: (3.120)

3.3.3.2 Operators

As we have seen, on the lattice we need to consider twist-2 operators. We start their
definitions by first noting that by changing to Euclidean space from Minkowski
space we replace the Lorentz group by the orthogonal group O.4/. We also work
in discrete space-time which reduces this to the hypercubic group H.4/  O.4/,
and since H.4/ is finite, mixings are possible [150]. In order to reduce operator
mixing, it is useful to use certain operator combinations which reside in certain
irreducible representations of H.4/. For example, if we look at v2 there are two
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different irreducible representations we can form that have different combinations
of indices:

Ov2a D Of14g; (3.121)

Ov2b D Of44g � 1
3

�
Of11g COf22g COf33g

�
I (3.122)

the first index here is the gamma matrix, and the second index is the derivative.
Since v2a and v2b are different representations of the same continuum operator, they
should agree in the continuum limit. Similarly,

Ov3 D Of114g � 1
2

�
Of224g COf334g

�
; (3.123)

Ov4 D Of1144g COf2233g �Of1133g �Of2244g ; (3.124)

provide access to higher moments. For more details on operator construction, see
[150].

3.3.3.3 Extracting Moments

Now, we want to extract these moments from calculations of lattice three-point
functions (Eq. (3.57)) using the methods outlined in Sect. 3.3.2. Let us take the v2a
operator as an example. In Minkowski space this operator takes the indices f01g

OM
v2a
D OM

f01g D
1

2
Nq
�
�M0
 !
D 1 C �M1

 !
D 0

�
q; (3.125)

and the matrix element from Eq. (3.82) can be written then as

i

4

�
N.p; s0/

ˇ̌
ˇ̌ Nq
�
�M0
 !
D 1 C �M1

 !
D 0

�
q

ˇ̌
ˇ̌N.p; s/

�

D hxi.q/ 1
2
Nu.p; s0/

�
�M0 p1 C �M1 p0

�
u.p; s/ ;

where we have used the more common notation for v.q/2 D hxi.q/, denoting the
fraction of the nucleon’s momentum carried by the quarks with flavour q. After
Euclideanisation of this operator,

�M0 D �E4 ; �Mi D �i�Ei ; pE4 D ipM0 � iE.p/; pEi D �pMi ; (3.126)

D4 D �iD.M/0; Di D �D.M/i ; (3.127)
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we can rewrite it as

i

4

�
N.p; s0/

ˇ̌
ˇ̌ Nq
�
�E0
 !
D 1 C �E1

 !
D 4

�
q

ˇ̌
ˇ̌N.p; s/

�

D hxi.q/ 1
2
Nu.p; s0/

���E4 p1 � �E1 EN .p/� u.p; s/ : (3.128)

Now if we use the standard spin-projector for an unpolarised nucleon, �unpol D
.1C �4/=2, and

J D 1

2
.��4p1 � i�1EN .p// hxi.q/ ; (3.129)

in Eq. (3.81), we find that the ratio of three- and two-point functions becomes

R.t; � Ip;pIOv2a ; �unpol/ D
G�unpol.t; � Ip;pIOv2a /

G2.t;p/
D ip1hxi.q/ : (3.130)

Following a similar process for v2b leads to

R.t; � Ip;pIOv2b / D �
E2

p C 1
3
p2

Ep

hxi.q/ : (3.131)

So we can see that in order to determine hxi using the v2a operator we have to work
with nonzero momentum, while in case of v2b we can work with zero momentum.

In Fig. 3.13 we present an example of lattice results for these ratios from the
QCDSF collaboration [151]. Here we see excellent agreement for the two different
representations v2a and v2b of the same continuum operator (here we are considering
the up-quark contribution), even though we look at finite lattice spacing, at different
choices of proton momentum.

3.3.3.4 Operator Renormalisation

Let us talk now briefly about operator renormalisation, which deserves its own set
of lectures (see, for example, [152]); we will consider here just the basic ideas
of renormalisation. The lattice itself is a regularisation scheme, and the matrix
elements that we measure using lattice operators will be in the lattice scheme; they
are so-called bare operators Obare. In order to compare a lattice calculation of an
observable to that in the continuum, i.e. from experiment or phenomenology, we
need to switch to a continuum regularisation scheme, e.g. MS. This is done by
applying some renormalisation constant

OS.M/ D ZS
O.M/Obare (3.132)
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Fig. 3.13 Comparison of the ratios for v2a in Eq. (3.130) and v2b in Eq. (3.131) for a u-quark in
the proton for different choices of momentum. Here the proton source and sink are placed at t D 0

and t D 17, respectively

(renormalise bare lattice operators in scheme S at scale M ). We have mentioned
mixing earlier, so if we have more operators with the same quantum numbers, but
same or lower dimension, then we need to include mixings between these operators,
i.e. we should actually include the sum of all of the contributions from the different
lattice operators to get the result for the continuum operator:

OS
i .M / D

X
j

ZS
OiOj

.M; a/Oj .a/: (3.133)

This procedure could in principle be done with lattice perturbation theory [12],
however this is well known to be poorly convergent. We are then forced to revert
to a nonperturbative method. The two commonly used methods are the Schrödinger
functional [153] and the Rome-Southampton method [154].

For recent work computing these renormalisation constants for many lattice
operators, see e.g. [155], and for a recent review of nonperturbative renormalisation,
see [156].

3.3.4 Generalised Parton Distributions

We have seen in the previous section how parton distribution functions provide a
description of the longitudinal momentum distributions of quarks and gluons in
the nucleon. Although less well-understood, there is increasing interest in gaining
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information on the transverse structure and angular-momentum distribution of
partons within the nucleon. Generalised parton distributions (GPDs) [157–159] have
opened new ways of studying the complex interplay of longitudinal momentum
and transverse coordinate space [160, 161], as well as spin and orbital-angular-
momentum degrees of freedom in the nucleon [162]. A full mapping of the
parameter space spanned by GPDs is an extremely extensive task, which most
probably needs support from nonperturbative techniques like lattice simulations.
Given this interest, there has been a large amount of activity within the lattice
community in the area of GPDs, and so we will devote some time here to
summarising some of the important aspects relevant for lattice simulations.

3.3.4.1 Definition

The generalised parton distributions of quarks are defined at leading twist through
the off-forward matrix elements of the light-cone operators

Z
d�

4�
ei�x

˝
P 0 ˇ̌ .�n�=2/ �� .n�=2/ˇ̌P ˛ D

U .P 0/
�
��H.x; �; t/C i
����

2m
E.x; �; t/

�
U.P / ;

Z
d�

4�
ei�x

˝
P 0 ˇ̌ .�n�=2/�5�� .n�=2/ˇ̌P ˛ D

U .P 0/
�
�5�

� QH.x; �; t/C i�5�
�

2m
QE.x; �; t/

�
U.P / ; (3.134)

for the helicity-independent and helicity-dependent distributions, respectively.
We note that the expressions in Eq. (3.134) are only valid in the light-cone
gauge where n � A D 0, otherwise we would need to include a gauge link
exp .�ig

R �=2
��=2 d˛ n � A.˛n// between the two quark fields to ensure gauge

invariance.
Figure 3.14 shows the electron-proton scattering process relevant for GPDs. Here

the proton stays intact as we had earlier for the determination of form factors, but
the probe has enough resolution to identify a single quark, as was the case for deep-
inelastic scattering. This process is known as deeply virtual Compton scattering
(DVCS), and the final states to be detected here are the proton together with the
scattered electron and a photon.

It is common to denote the momentum transfer (squared) in the context of GPDs
by� D P 0 �P (t D �2). Using the light-cone vector n, we define the longitudinal
momentum transfer by � D �n ��=2. The proper definition of the twist-2 tensor or
quark helicity-flip GPDsHT , ET , QHT and QET can be found in [163]. GPDs provide
a solid framework in QCD to relate many different aspects of hadron physics, some
of which we have already discussed in earlier sections
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Fig. 3.14 Graphical representation of GPDs as part of a scattering amplitude

• The forward limit � ! 0 of certain GPDs reproduces the well known parton
distributions, that is H.x; � D 0; t D 0/ D q.x/ D f1.x/, QH.x; 0; 0/ D
�q.x/ D g1.x/ and HT .x; 0; 0/ D ıq.x/ D h1.x/.

• The integral over the longitudinal momentum fraction
R

dx of the GPDs gives
the Dirac, Pauli, axial, pseudo-scalar, tensor etc. form factors,

R
dxH.x; �; t/ D

F1.t/,
R

dxE D F2.t/,
R

dx QH D gA.t/,
R

dx QE D gP .t/,
R

dxHT D gT .t/ etc.
• The Fourier transforms .2�/�2

R
d�?e�ib

?

��
? of the GPDs H , QH and HT at

� D 0 are coordinate-space probability densities in the impact parameter b?
[164].

• The forward limit of the x-moment of the GPD E ,
R

dx x E.x; 0; 0/ D B20.0/,
allows for the determination of the quark orbital-angular-momentum contribution
to the nucleon spin, Lq D 1=2.hxi C B20 � �q/, where hxi is the quark
momentum fraction [162].

For more information on GPDs, see [165] for a review.

3.3.4.2 Matrix Elements and Moments of GPDs

For a lattice calculation of GPDs, we proceed in a similar way to our earlier
discussion of structure functions by working in Mellin space to relate matrix
elements of local operators to Mellin moments of the GPDs. But while for the
moments of PDFs we considered forward (t D 0) matrix elements of the twist-2
operators defined in Eqs. (3.110) and (3.115), here we will use non-forward matrix
elements of these same twist-2 operators. These matrix elements will specify the
.n � 1/th moments of the spin-averaged and spin-dependent generalised parton
distributions, respectively. In particular, for the unpolarised GPDs, we have

Z 1

�1
dxxn�1 Hq.x; �; t/ D Hq

n .�; t/ ;

Z 1

�1
dx xn�1 Eq.x; �; t/ D Eq

n.�; t/ ; (3.135)
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where [162]

Hq
n .�; t/ D

b n�1
2 cX

iD0
A
q
n;2i .t/.�2�/2i C Cq

n .t/.�2�/njn even ;

Eq
n.�; t/ D

b n�1
2 cX

iD0
B
q
n;2i .t/.�2�/2i � Cq

n .t/.�2�/njn even ; (3.136)

and the generalised form factors Aqn;2i .t/, B
q
n;2i .t/ and Cq

n .t/ for the lowest three
moments are extracted from the nucleon matrix elements [162]

hP 0jO�1
q jP i D Aq10.t/ Nu .P 0/��1u.P /C Bq

10.t/ Nu.P 0/
i
�1���

2m
u.P / ; (3.137)

hP 0jOf�1�2g
q jP i D Aq20.t/ Nu .P 0/� f�1u.P /P �2g (3.138)

C Bq
20.t/ Nu.P 0/

i
f�1���

2m
u.P /P

�2g C C
q
2 .t/

1

m
Nu.P 0/u.P /�f�1��2g :

Note that the momentum transfer is given by � D P 0 � P with t D �2, while � D
�n ��=2 denotes the longitudinal momentum transfer, and P D .P 0CP/=2 is the
average nucleon momentum. We can construct an overdetermined set of equations
to solve Eqs. (3.137), (3.138) for the generalised form factors, Aqn;2i .t/, B

q
n;2i .t/ and

C
q
n .t/. This technique is described in detail in [166].

For the lowest moment, A10 and B10 are just the Dirac and Pauli form factors F1
and F2, respectively:

Z 1

�1
dxHq.x; �; t/ D Aq10.t/ D F1.t/ ; (3.139)

Z 1

�1
dxEq.x; �; t/ D Bq

10.t/ D F2.t/ ; (3.140)

while QA10 and QB10 are the usual axial-vector and pseudoscalar form factors,
respectively

Z 1

�1
dx QHq.x; �; t/ D QAq10.t/ D gA.t/ ; (3.141)

Z 1

�1
dx QEq.x; �; t/ D QBq

10.t/ D gP .t/ : (3.142)
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Similarly, the first moments of H;E; QH; QE are explicitly

Z 1

�1
dx x Hq.x; �; t/ D Aq20.t/C �2C q

2 .t/ ; (3.143)

Z 1

�1
dx x QHq.x; �; t/ D QAq20.t/ ; (3.144)

Z 1

�1
dxx Eq.x; �; t/ D Bq

20.t/ � �2C q
2 .t/ ; (3.145)

Z 1

�1
dxx QEq.x; �; t/ D QBq

20.t/ : (3.146)

Note that there are no C form factors for the polarised moments.
We also observe that in the forward limit (t D � D 0) the moments ofHq reduce

to the moments of the unpolarised parton distribution An0.0/ D hxn�1i.

3.3.4.3 Transverse Densities

In the same way as we discussed in Sect. 3.2.1.3 for obtaining charge and mag-
netisation densities through two-dimensional Fourier transforms of electromagnetic
form factors, Burkardt [161] has shown that generalised parton distributions gain
a physical interpretation when Fourier transformed to impact parameter space at
longitudinal momentum transfer � D 0. For example,

q.x;b?/ D
Z
d2�?
.2�/2

e�ib
?

��
?H.x; 0;��2?/ ; (3.147)

(and similarly for the polarised �q.x;b?/) where q.x;b?/ is the probability
density for a quark with longitudinal momentum fraction x and at transverse
position (or impact parameter) b?.

Burkardt [161] also argued thatH.x; 0;��2?/ becomes�2?-independent as x !
1 since, physically, we expect the transverse size of the nucleon to decrease as x
increases, i.e. limx!1 q.x;b?/ / ı2.b?/. As a result, we expect the slopes of the
moments of H.x; 0;��2?/ in �2? to decrease as we proceed to higher moments.
This is also true for the polarised moments of QH.x; 0;��2?/, so from Eq. (3.136)
with � D 0 we expect that the slopes of the generalised form factors An0.t/ and
QAn0.t/ should decrease with increasing n. This was clearly seen in several lattice

simulations, e.g. [167, 168].
This idea was extended further to demonstrate how to use the first two moments

of proton [169] and pion [170] GPDs to gain insights into the transverse spin
distribution of hadrons. These results provided fascinating insights in to the complex
interplay between hadron and quark spin orientation and the transverse distribution
of quarks inside a hadron.
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3.3.4.4 Nucleon Spin

As we have discussed earlier, it has been long known from DIS experiments that
only about 30 % of the proton’s spin is generated from the intrinsic spin of the
quarks. This presents a puzzle as to how the remaining 70 % is generated through
quark orbital angular momentum and by gluons.

Ji has provided a way forward by showing that the total quark and gluon angular
momenta can be related to the second .n D 2/ moments of the GPDs H and E
[162]

Jq;g D 1

2
.A

q;g
20 .0/C Bq;g

20 / ; (3.148)

where A20.0/ and B20.0/ are the generalised form factors from Eq. (3.138) at zero
momentum transfer (t D 0). We now have Ji’s spin sum rule

1

2
D
X
q

Jq C Jg : (3.149)

The matrix elements in Eq. (3.138) can be computed on the lattice, and when
combined with the further decomposition

Jq D 1

2
�q C Lq ; (3.150)

together with a lattice determination of the quark spin fractions �q from
Sect. 3.3.2.2, we are able to not only provide a determination for the total amount
of the proton’s spin provided by the quarks, but also decompose this into quark spin
and orbital angular momentum contributions.

As an example, we show in Fig. 3.15 results from QCDSF [171] (left) and LHPC
[172] (right) for the total quark angular momentum contribution to the proton’s
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Fig. 3.15 Total angular momentum contribution of the quarks to the spin of the proton. Results
are from QCDSF [171] (left) and LHPC [172] (right)
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spin as a function of m2
� and its decomposition into helicity and orbital angular

momentum contributions.

3.4 Summary

In these notes, we have studied various aspects of hadron structure, focusing on the
nucleon, and how they can be studied on the lattice. We started with a discussion of
elastic electron-proton scattering and how this leads to the idea of electromagnetic
form factors and phenomenological implications for the distribution of charge
(quarks) inside the nucleon.

By introducing the idea of deep-inelastic scattering (DIS), we motivated the
idea of parton distribution functions (PDFs) and how this leads to description of
distribution of momentum. These two ideas were combined into a general picture
of the structure of the nucleon through the introduction of generalised parton
distributions (GPDs). From these generalised functions, we saw how we can gain
insights into transverse densities and decomposition of the spin of the nucleon into
its quark and gluon constituents.

From the lattice side, we have learnt how we can determine the nonperturbative
matrix elements relevant for these phenomenological quantities on the lattice.
To do this, we introduced lattice three-point functions and showed how we can
extract these matrix elements via ratios of three-point to two-point functions. We
demonstrated the use of these lattice methods by providing some typical examples
of recent lattice results of phenomenologically interesting quantities, such as the
electromagnetic form factors F1 and F2, the average momentum fraction hxi, the
axial coupling constant gA, and moments of generalised parton distributions.
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school. JMZ is supported by the Australian Research Council grant FT100100005.



Chapter 4
Chiral Perturbation Theory

Brian C. Tiburzi

Abstract The era of high-precision lattice QCD has led to synergy between lattice
computations and phenomenological input from chiral perturbation theory. We pro-
vide an introduction to chiral perturbation theory with a bent towards understanding
properties of the nucleon and other low-lying baryons. Four main topics are the
basis for this chapter. We begin with a discussion of broken symmetries and the
procedure to construct the chiral Lagrangian. The second topic concerns specialized
applications of chiral perturbation theory tailored to lattice QCD, such as partial
quenching, lattice discretization, and finite-volume effects. We describe inclusion of
the nucleon in chiral perturbation theory using a heavy-fermion Euclidean action.
Issues of convergence are taken up as our final topic. We consider expansions in
powers of the strange-quark mass, and the appearance of unphysical singularities
in the heavy-particle formulation. Our aim is to guide lattice practitioners in
understanding the predictions chiral perturbation theory makes for baryons, and
show how the lattice will play a role in testing the rigor of the chiral expansion
at physical values of the quark masses.

4.1 Introductory Remarks

Prior to lattice-QCD computations, chiral perturbation theory (�PT) was the only
method for doing high-precision low-energy QCD phenomenology. One crowning
achievement of �PT is a procedure for the determination of ratios of the light-
quark masses. These ratios can be determined using the experimentally measured
hadron spectrum with small effects, such as isospin breaking from both strong and
electromagnetic sources, treated in a systematic fashion, see [173]. In essence, �PT
provides the tool to study the light-quark mass dependence of low-energy QCD
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observables. As such, it is a tool that furnishes considerable insight for lattice
QCD computations. The success of this model-independent description of low-
energy QCD is limited in practice by the size of the physical light-quark masses
compared to strong interaction scales. Lattice QCD computations are confronting
predictions made by �PT. For the strange quark, there has been considerable debate
about the efficacy of the SU.3/ chiral expansion, even in the meson sector. The
chiral dynamics of the nucleon has not been conclusively exposed from lattice QCD
computations. As lattice collaborations worldwide attain light quark masses, the
chiral dynamics of low-lying hadrons will be rigorously tested.

We undertake the task of making a user-friendly introduction to �PT aimed at
lattice practitioners, with a particular focus on the nucleon. From the outset, we
stress that this chapter is not meant to be a comprehensive review of the field. By
contrast, our aim is to provide a pedagogical introduction that will arm the reader
with the tools necessary to investigate further. We hope to familiarize readers with
the predictions that �PT makes for hadrons, and to advertise the role lattice QCD
will play in assessing the chiral expansion at physical values of the quark masses.
It is useful for the reader to be accustomed to the concept of an effective field
theory, the study of which is possible through a number of excellent references.
We recommend the textbooks [174, 175], and the summer school lectures [176].
For the specific topics covered in this chapter, we will suggest a few references
for further study rather than provide an exhaustive list of the possibilities. Various
exercises are scattered throughout the presentation. Some are simple and meant only
as reminders, whereas others require more thought.

Our presentation is organized around four central topics. The first topic in
Sect. 4.2 is key to the entire chapter and concerns the construction of the chiral
Lagrangian. We consider the symmetry-breaking pattern of QCD for two light quark
flavors, discuss the emergent Nambu-Goldstone bosons, and expose their universal
low-energy dynamics through the effective chiral Lagrangian. The second topic is
taken up in Sect. 4.3, where applications geared toward lattice QCD are the focus.
Beyond providing quark-mass extrapolation formulae, �PT has been extended in
various ways that are relevant for lattice gauge theory simulations. In particular, we
address extensions needed to account for the partially quenched approximation to
QCD, and modifications necessary to describe the effects of finite volume, as well
as the effects of lattice discretization. Chiral dynamics of the nucleon is pursued
in Sect. 4.4. Using a heavy-fermion Euclidean action, we show how to include
the nucleon in �PT. Particular attention is paid to the quark-mass dependence of
the nucleon mass, and to the phenomenology of the pion-nucleon sigma term. The
issue of convergence is taken up as our final topic in Sect. 4.5. We remind the reader
about the nature of asymptotic expansions, and the challenges inherent to assessing
the convergence of the chiral expansion using phenomenology and lattice data. With
such concerns in mind, we extend �PT to include the strange quark. We investigate
how the chiral expansion of certain hyperon properties can be reorganized into
a better perturbative expansion by re-summing strange-quark mass contributions.
Finally, we address the appearance of unphysical singularities in the heavy-nucleon
formulation and the need for threshold re-summations.
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4.2 The Chiral Lagrangian

The possibility of building a phenomenological theory of low-energy QCD exists
because there are unusually light particles in the hadron spectrum. Pions are the
lightest hadrons, and they are well separated in energy from any other states
or resonances. There is an elegant explanation, moreover, for the lightness of
pions due to spontaneous breakdown of chiral symmetry. The physics underlying
this explanation is the Nambu-Goldstone mechanism [177, 178], and allows us
to construct systematically a phenomenological theory of pions. Chiral symmetry
breaking and the construction of the chiral Lagrangian are the topics of this section.

4.2.1 Symmetries and Symmetry Breaking

The spectrum and properties of low-energy QCD are indicative both of its sym-
metries, and of its symmetry breaking. We begin with the case of QCD with two
massless quark flavors, which will be identified as the up and down quarks. The
action density for QCD can be written as the sum of contributions from matter and
radiation fields, LQCD D L CLYM, where the latter is the Yang-Mills action, LYM.
Our concern lies with the matter part of the action, L , which has the form

L D
2X
iD1

 i D=  i : (4.1)

Written this way, the action obviously possesses a global U.2/ flavor symmetry,
but there is a larger symmetry group. To expose the further symmetries of the
action, we define chiral projection matrices, PL;R D 1

2
.1 � �5/, which have all

the usual properties expected of projectors. Right- and left-handed quark fields are
then defined using chiral projectors,  L;R D PL;R . Consequently, the matter part
of the QCD action can be written as

 D=  D  LD=  L C  RD=  R; (4.2)

for the flavor-doublet quark field. This simple decomposition seems to make a
profound statement: the chirality of a massless quark cannot be changed by gluon
interactions. This is not exactly the full story, as we shall shortly see.

On account of the handed decomposition of the quark fields in Eq. (4.2), the sym-
metry group of the massless QCD action is chiral, having the form U.2/L˝U.2/R.
Specifically for matrices .L;R/ 2 U.2/L ˝ U.2/R, we have the transformations
 L ! L L and independently  R ! R R. This transformation appears quite
complicated in terms of the original Dirac fermion,  ! .LPL C RPR/ , but is
nonetheless a symmetry of Eq. (4.1). An important subgroup of the chiral symmetry
group is the vector subgroup, U.2/V , which is the naïve flavor symmetry of the
massless action. For a transformation with L D R � V , we have simply  ! V .
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Additional subgroups of the chiral symmetry group are important. Consider the
trivial group decomposition,U.2/L˝U.2/R D U.1/L˝U.1/R˝SU.2/L˝SU.2/R,
achieved by removing the overall phase from each U.2/ transformation. Under the
U.1/L˝U.1/R subgroup, we have the simple phase transformations L ! ei�L L,
and  R ! ei�R R. In terms of the Dirac fermion field, we see

 !
�
1

2

�
ei�R C ei�L�C 1

2

�
ei�R � ei�L� �5

�
 : (4.3)

The vector subgroup U.1/V  U.1/L ˝ U.1/R is specified by all phase trans-
formations under which the left- and right-handed fields are re-phased identically,
�R D �L � � , and consequently  ! ei� . This global symmetry leads to the
conservation of quark number (or equivalently baryon number). The orthogonal
choice of phases, namely �R D ��L � �5, leads to the axial transformation of
the quark field,  ! ei�5�5 , and generates the U.1/A symmetry of the action.

1 Consider the non-singlet axial transformation of the quark field, specified
by  i ! .ei�

a�a �5 /ij j , with �a as isospin matrices. Is there a corresponding
symmetry group for the massless QCD action?

As already alluded to, global symmetries generate classically conserved currents.
According to the discussion so far, there should be three non-singlet left-handed
currents, J a�;L D  L�

a�� L, three non-singlet right-handed currents, J a�;R D
 R�

a�� R, in addition to the singlet vector current, J� D  �� , and singlet
axial-vector current, J�5 D  ���5 . The regulated theory, however, is not invariant
under flavor-singlet axial transformations. This is referred to as the chiral anomaly;
because, at the quantum level, the singlet axial current is not conserved:

@�J�5.x/ D @�J�;L.x/ � @�J�R.x/ D � ˛s
8�
����
F

A
��F

A
�
 ; (4.4)

in four dimensions. Of course, this is a subject well-known to lattice QCD. The
chiral anomaly presents an essential obstacle in devising chirally invariant lattice
regularizations for fermions. We suggest that readers unfamiliar with these issues
consult [50].

Due to the chiral asymmetry in Eq. (4.4), we shall merely dismiss U.1/A from
our discussion of symmetries. The definition of a regulated theory of massless
QCD has a U.1/V ˝ SU.2/L ˝ SU.2/R symmetry, but this is not the final
story. Pairing of quark chiralities is preferred by the vacuum state of QCD. This
state should be viewed as the ground state of the quantum field theory, and the
ground state generally need not respect the symmetries of the underlying theory.
While perturbative QCD dynamics does not distinguish between quark chiralities,
nonperturbatively, the ground state actually does, through the formation of a nonzero
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vacuum expectation value (vev) of the chiral condensate, h  i D h L Ri C
h R Li ¤ 0. Indeed, massless quarks can change their chirality by scattering off a
vacuum condensate of quarks and antiquarks paired by handedness. In this case,
we refer to the chiral symmetry as being spontaneously broken by the vacuum.
The formation of the condensate completely breaks the chiral symmetry of the
theory, moreover, as the vev h  i is not invariant under any chiral subgroup of
SU.2/L ˝ SU.2/R. The condensate is invariant under the vector subgroup, and
thus, we have the symmetry breaking pattern U.1/V ˝ SU.2/L ˝ SU.2/R �!
U.1/V ˝ SU.2/V .

At this point, we do not dismiss the non-singlet chiral symmetries as we did with
the axial symmetry. It turns out that the case of spontaneously broken symmetries is
considerably rich in physics. In fact, spontaneously broken global symmetries lead
to massless excitations of the vacuum. This is the Nambu-Goldstone mechanism.
In Fig. 4.1, we use a cartoon to elucidate the Nambu-Goldstone mechanism. The
cartoon depicts the potential energy of a theory on a group manifold. The lowest-
energy states are degenerate and form a circularly symmetric valley that reflects the
rotational invariance of this theory; however, the physical vacuum of the theory is
located at a particular angle. In this case, the rotational symmetry is spontaneously
broken. When quantized, fluctuations about the vacuum state will correspond to
particles. There are two distinct types: fluctuations up the hill are energetically
costly and will correspond to massive excitations of the theory; on the other hand,
fluctuations along the circular valley are energetically free and will correspond to
massless excitations. For each of the broken generators, there is a flat direction in
the vacuum manifold, and hence a massless particle. In QCD with two massless
quarks, there should thus be three Nambu-Goldstone bosons.

Fig. 4.1 Cartoon depicting a
spontaneously broken global
symmetry. The global
symmetry corresponds to
rotations in the plane, for
which the vacuum manifold
exhibits a circular valley of
energetically equivalent
states. The physical vacuum
sits in the valley at a
particular angle
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4.2.2 Chiral Dynamics

The dynamics governing Nambu-Goldstone modes is universal, depending only on
the pattern of spontaneous symmetry breaking. To write down such a theory, we
need to parameterize fluctuations associated with the broken generators. Mathemat-
ically we are parameterizing a coset of the group manifold. While our presentation
is specific to the symmetry-breaking pattern of two-flavor QCD, we keep sufficient
generality to allow extension to other cases of interest.

A nonzero value of the condensate specifies the location of the vacuum within
the group manifold. Let us write the vev in the form

h jR iLi D ��ıij: (4.5)

Under an SU.2/L ˝ SU.2/R transformation, we see that the condensate is not
invariant, h jR iLi ! ��.LR/ij. However, the restriction of the condensate to
the flavor identity, ıij, maintains invariance under the vector subgroup, SU.2/V .
The preservation of vector symmetries can be argued rigorously [179]. The value
of the condensate � is real, which implies that parity is not spontaneously broken.
While we know experimentally that this is the case for QCD, the argument against
spontaneous breaking of parity [180] does not have the status of a theorem because
known loopholes exist. Nonetheless the form of the condensate in Eq. (4.5) dictates
the pattern of spontaneous symmetry breaking.

To describe the Nambu-Goldstone modes, we treat the condensate as a locally
valued field ˙.x/ that picks up a vev. The fluctuations about this value encode the
Nambu-Goldstone bosons. Thus we promote

ıij �! ˙ij.x/ D ıij C � � � : (4.6)

Because ˙.x/ describes the local fluctuations, we must have ˙ij.x/ D
ŒL.x/R.x/�ij D Œei�

a
L�

a
e�i�bR�b �ij for the most general, local SU.2/L ˝ SU.2/R

fluctuation. Our concern, however, is not with all fluctuations, but with those
corresponding to broken generators. As the vector subgroup remains intact, we
seek to parameterize the coset SU.2/L˝ SU.2/R=SU.2/V . This can be achieved by
simply restricting ˙.x/ not to lie in SU.2/V . As such matrices are characterized
by �aL D �aR, choosing the orthogonal combination �aL D ��aR produces a
parameterization of the coset. Writing �aL�

a � �=f , we have the desired matrix

˙ D e2i�=f D 1C 2i�

f
C � � � : (4.7)

The Nambu-Goldstone modes appear in the coset field through �, which is a
traceless Hermitian 2 � 2 matrix, which we write in the form
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� D
 

1p
2
�0 �C

�� � 1p
2
�0

!
: (4.8)

From the transformation property of the coset under global chiral transformations,
namely˙ ! L˙R, we can infer the transformation rule of the Nambu-Goldstone
modes under the vector subgroup SU.2/V . They transform as � ! V�V , which
establishes the isospin quantum numbers of �; it contains an isotriplet of pions.

2 Deduce the discrete symmetry properties of the Nambu-Goldstone modes
by analyzing the transformations of the coset field ˙ .

In describing the vacuum fluctuations, we introduced a dimensionful parameter
f . This parameter needs to be determined from experiment, and we will explain how
at the end of this section. From a purely theoretical perspective, f controls whether
fluctuations about the vacuum are Gaußian, hence, whether the Nambu-Goldstone
modes are weakly interacting particles. To see this explicitly, we construct the action
for the coset field. It is determined from all possible chirally invariant operators
involving ˙ , and derivatives of ˙ . When the coset is expanded about its vev, the
dynamics of massless pions should emerge. Using the transformation rule ˙ !
L˙R, and realizing that ˙˙ D 1, the chirally invariant combination involving
the fewest number of derivatives is

L�PT D f 2

8
Tr
�
@�˙

@�˙
� D 1

2
@��

0@��
0 C @��C@��� CO.1=f 2/: (4.9)

Expanding to quadratic order in the fields, we see that the numerical prefactor
appended to the action ensures that the kinetic terms are canonically normalized, and
indeed the theory describes three massless pions. This should come as no surprise;
it is basically by design. Because the theory is nonlinear, however, expanding to a
higher order produces multipion interactions. We will explain shortly how to treat
these systematically.

So far our discussion has focused on QCD with two massless quarks, and there
appear to be no such quarks found in nature. The up and down quarks have mass,
however, their masses are considerably small compared to �QCD. We can think
about the discussion above as an approximation for the up and down quarks, and
the natural question to ask becomes how to address the effect of nonvanishing quark
masses. To answer this question, we return to the matter part of the QCD action,
which has a mass term of the form

�L D mq  D mq

�
 R L C  L R

�
; (4.10)
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for degenerate up and down quarks. This term breaks chiral symmetry in precisely
the way the chiral condensate does, SU.2/L ˝ SU.2/R ! SU.2/V . The theory
of the Nambu-Goldstone modes should include terms which encode the explicit
symmetry breaking introduced by the quark mass. The correct term to add to
Eq. (4.9) is

�L�PT D �mq�Tr
�
˙ C˙� D 4mq�

�
�1C 2

f 2

�
1

2
�0�0 C �C��

��
C � � � :

(4.11)

A few comments are in order. This term is not chirally invariant but maintains
invariance under the vector subgroup, and thus shares precisely the same symmetries
as the quark mass term in the QCD action. A new dimensionful parameter � was
introduced when writing down this term. It is not fixed by symmetries. We include
here only a term at linear order in the quark mass. While there are terms proportional
to m2

q which we will meet below, we are considering the perturbative expansion
about the chiral limit, mq D 0, and the linear-order term represents the leading
contribution. From expanding out �L�PT to quadratic order in the fields, we see
there is a contribution to the vacuum energy, and also a mass term for the pions,
m2
� D 8�mq=f

2. Indeed, the pions are not exact Nambu-Goldstone bosons; the
explicit breaking of chiral symmetry introduced by the quark mass term of the QCD
action leads to a nonvanishing mass for the pions.

The vacuum energy must be due to the chiral condensate, the existence of
which was an essential ingredient in our construction thus far. To expose this fact,
we realize that the chiral condensate can be determined from the QCD partition
function, �@ logZQCD=@mq D h  i. In order that the chiral Lagrangian be an
effective theory for low-energy QCD, it must be that their partition functions match,
Z�PT ' ZQCD. Of course this relation is not an equality, rather a statement about
matching Green functions between the two theories (such foundational aspects to
�PT are elucidated in [181]). As a result, we must have

h  i D �@ logZ�PT=@mq: (4.12)

On the left-hand side is the QCD vacuum expectation value, and on the right-
hand side is the �PT expression evaluated in terms of the effective pion degrees
of freedom. In order that the theories match in the chiral limit, we require
h  i D �2Nf �. Because of parity and flavor invariance, this condition is simply
h jR iLi D ��ıij; hence � is exactly the same parameter introduced in Eq. (4.5) for
the chiral condensate. Combining this identification with the expression for the pion
mass, we have the Gell-Mann–Oakes–Renner relation, f 2m2

� D 2mqjh  ij.
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4.2.3 Leading Order and Beyond

Let us summarize our findings so far. The dynamics of the approximate Nambu-
Goldstone bosons of chiral symmetry breaking is described by the chiral
Lagrangian, which has the form

L�PT D f 2

8
Tr
�
@�˙

@�˙
� � �mq Tr

�
˙ C˙� (4.13)

and includes the leading terms involving the lowest number of derivatives and a
single insertion of the quark mass. Up to quadratic order, we find the vacuum
energy due to the chiral condensate and a theory of pions whose masses squared are
linear in the quark mass. Beyond quadratic order, there are interaction terms, such
as the quartic terms � mq�

f 4
�4 and � 1

f 2
.�@��/

2. As always, these higher-order
interactions renormalize lower-order terms. For example, the four-pion interaction
terms lead to a renormalization of the pion mass, which is shown in Fig. 4.2. Using
the pion propagator, we schematically evaluate the contribution to the pion self-
energy from the four-pion vertex with quark mass insertion,

�m2
� �

mq�

f 4

Z
k

1

k2 Cm2
�

� mq�

f 4

�
�2 C mq�

f 2

�
log�2 C finite

��
; (4.14)

where � is a dimensionful ultraviolet cutoff scale. This result features a power-law
divergence, which can be absorbed into a definition of the renormalized parameter
�; and, if we use dimensional regularization, this contribution will automatically be
subtracted. Additionally, there is a logarithmic divergence which cannot be absorbed
into a renormalization of the parameters we have thus far written down. The reason
is that the divergence is proportional to the second power of the quark mass. To
work at one-loop order, we require additional counterterms than the leading-order
chiral Lagrangian can supply.

The requirement of additional terms should not be surprising, since the chiral
Lagrangian represents a nonrenormalizable theory. This is not a fundamental
limitation, however, because we expect its validity only at low energies. In order
to make the theory useful in practice, we desire a scheme for organizing the infinite

Fig. 4.2 Graphical depiction of the four-pion vertex. Forming a pion loop by contracting two of
the external legs produces a divergent self-energy correction
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number of local operators needed to renormalize the theory. Without such a power-
counting scheme, the theory is of no practical use. In our exploration, we have been
tacitly assuming a power counting. We have written down terms with the fewest
number of derivatives, and the lowest number of quark mass insertions.

To make this formal, consider p to be a small momentum scale. A consistent
loop expansion can be devised by counting the powers of derivatives and quark
mass insertions as follows: derivatives count as one power, @� � p, and quark
masses count as two powers, mq � p2. The leading chiral Lagrangian written in
Eq. (4.9) contains two terms both of orderp2. As a consequence, the pion propagator
counts as order p�2, and each of the four-pion interactions counts as order p2.
The remaining powers of momenta in a general Feynman diagram arise from loop
integrals, which each contribute p4 to the counting of powers of p. Now consider a
Feynman diagram havingL loops, I internal lines, and V vertices from the leading-
order Lagrangian. The diagram must scale with the power p4L�2IC2V . This power
can be simplified using the Euler formula,L D I � V C 1, which gives the scaling
p2LC2. Thus, there is an ordered expansion in powers of p2 if we consider the
number of loops.

3 What happens to the power-counting argument in d D 2 and 6 dimen-
sions? Do the results surprise you? Why is this question not asked about
d D 3 or 5?

In considering part of the one-loop correction to the pion self-energy in
Eq. (4.14), we found the result scales as m2

q � p4, which is consistent with
the general argument. At one-loop order, all contributions are of order p4. To
renormalize one-loop diagrams, we need higher-order local operators that also scale
with four powers of p. These operators can only be formed from four derivatives,
two derivatives and a quark mass insertion, or two quark mass insertions. At any
order in the loop expansion, one requires only a finite number of higher-order
counterterms to renormalize the theory. With this power counting, we can hence
make sense of the nonrenormalizable theory.

To construct higher-order terms of the chiral Lagrangian with ease, the spurion
trick proves useful. Let us first reconsider the leading-order effect of the quark
mass in the chiral Lagrangian. The quark mass introduces explicit breaking of
chiral symmetry and to include its effects, we wrote down a term which breaks the
symmetry in precisely the same manner. Beyond leading-order, this task becomes
rather difficult. Instead of this procedure, we promote the quark mass to a complex
scalar field, denoted by s

�L D mq

�
 R L C  L R

� �!  Rs
 L C  Ls  R; (4.15)
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and endow this field with a spurious transformation rule, s ! LsR which renders
the quark mass term invariant. The procedure is then to construct all possible
operators involving s that are invariant under chiral transformations. For example,
with one insertion of s, the term Tr

�
˙s C s˙� is chirally invariant. At the end

of the day, giving the scalar field a vev, s D mq C � � � , breaks chiral symmetry in
precisely the way the quark mass does.

To construct the order p4 chiral Lagrangian, we have the fields ˙ and s, which
have the transformations˙ ! L˙R, and s ! LsR. Using these fields, we write
down all possible p4 terms that are chirally invariant. We also impose Euclidean
invariance, and invariance under C , P and T transformations. Finally we replace
the spurion field with its vev. The result is an effective Lagrangian encompassing
the pattern of spontaneous and explicit symmetry breaking of QCD.

It is easy to construct invariant terms, for example


Tr
�
˙s � s˙��2 is

invariant under chiral transformations. When s picks up a vev, however, this term
becomes m2

q


Tr
�
˙ �˙��2, which vanishes because ˙ is an SU.2/ matrix. The

difficult task becomes finding the minimal set of required terms. For two degenerate
quarks, the corresponding fourth-order chiral Lagrangian can be written in the form

L.4/�PT D L1


Tr
�
@�˙

@�˙
��2 C L2 Tr

�
@�˙

@�˙
�

Tr
�
@�˙

@�˙
�

(4.16)

CL3mq�

f 2
Tr
�
@�˙

@�˙
�

Tr
�
˙ C˙�C L4 .mq�/

2

f 4


Tr
�
˙ C˙��2 :

The dimensionless coefficients of the operators, fLi g, are free parameters referred to
as low-energy constants. Often they are also called Gasser-Leutwyler coefficients,
because the systematic investigation of chiral perturbation theory to one-loop order
was carried out by them, see [182]. It is important to note that our Gasser-Leutwyler
coefficients are not Gasser and Leutwyler’s coefficients because of our differing
parameterization of the coset manifold. The four low-energy constants provide
the counterterms necessary to renormalize all one-loop graphs in �PT. When one
considers external currents, additional terms become necessary.

4 Determine the effects of strong isospin breaking, md ¤ mu, on the chiral
Lagrangian. At what order does the pion isospin multiplet split?

To illustrate the features of a one-loop computation in �PT, we perform the
simplest possible one. This calculation is the chiral correction to the condensate.
Beyond leading order, we have the operator expression

h  i D �@Z�PT

@mq

D �4�
�
1 � 1

f 2
Tr
�
�2
��C c.t.; (4.17)
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where c.t. denotes contributions from counterterms. Contracting the pions to form
the bubble diagram yields a correction to the condensate

�h  i D 12�

f 2

Z
k

1

k2 Cm2
�

D �12�m
2
�

.4�f /2

�
1

"
� �E C log 4� C log

�2

m2
�

C 1
�
;

(4.18)

where we have computed the integral in d D 4 � 2" dimensions with " 
 1.
The contribution from the counterterm can be determined using the fourth-order
Lagrangian at tree level. Only the L3 and L4 terms survive differentiation with
respect to the quark mass; furthermore, only the L4 term contributes to the vacuum
energy without requiring pion loops. Assembling the loop and local contributions
after MS, we arrive at the final result

h  i D h  imqD0
�
1C 3m2

�

.4�f /2

�
log

�2

m2
�

C 1
�
� m

2
�

f 2
L4.�/

�
: (4.19)

Long-range corrections to the chiral-limit value of the condensate come with a chiral
logarithm. The renormalization-scale dependence introduced by the logarithm is
exactly compensated by the running of the Gasser-Leutwyler coefficient, L4.�/;
specifically, it must satisfy the renormalization group equation, �2 d

d�2
L4 D 3

16�2
.

Generally, �PT can be used to compute the quark-mass corrections to vari-
ous low-energy observables. Expressions for these observables will involve their
chiral-limit values plus chiral logarithms that are calculable from the one-loop
(and higher) diagrams. Additionally, there are local contributions from higher-
dimensional operators that are required to renormalize the theory. The low-energy
constants introduced require experimental data or lattice calculations to determine.
Beyond the chiral condensate, which we found has a chiral expansion of the form
h  i D A


1CB mq

�
logmq C C

��
, a few examples are the pion mass, which

has a chiral expansion of the form m2
� D Amq


1C B mq

�
logmq C C

��
, and the

scattering length for I D 2 pion scattering, which has a chiral expansion of the form
aID2
�� D Apmq


1C B mq

�
logmq C C

��
.

4.2.4 External Fields

The determination of further quantities, such as electroweak observables, requires
the inclusion of external fields. To accomplish this, we return to the QCD action and
use the gauge principle to include external left- and right-handed fields

L D  LD= L L C  RD= R R; (4.20)

with the handed gauge-covariant derivatives specified by .D�/L D @�CigA�CiL�,
and .D�/R D @� C igA� C iR�. For example, an external electromagnetic field is
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included by choosing the left- and right-handed gauge fields asL� D R� D QeAem
� ,

with Aem
� the photon field, Q the electric-charge matrix, and e the unit of electric

charge. The gauged theory has a local chiral invariance under which the quark
fields transform as  L ! L.x/ L, and  R ! R.x/ R. The external fields
must correspondingly transform according to the rules: L� ! L.x/L�L

.x/ C
i Œ@�L.x/�L

.x/ for the left-handed gauge field, and R� ! R.x/R�R
.x/ C

i Œ@�R.x/�R
.x/ for the right-handed gauge field.

To include external fields in �PT, we promote the global chiral invariance to a
local one. The coset field consequently has the transformation˙ ! L.x/˙R.x/,
and it becomes efficacious to define a chirally covariant derivative that satisfies the
transformation rule D�˙ ! L.x/ŒD�˙�R

.x/. Using the transformations of the
external gauge fields, the chirally covariant derivative must have the form

D�˙ D @�˙ C iL�˙ � i˙R�: (4.21)

If we count the external gauge fields as order p in the power counting, then
D� � p, and the leading-order chiral Lagrangian has exactly the same form as
in Eq. (4.9), with the replacement @� ! D�. At higher orders, one carries out this
replacement to ensure gauge invariance; however, there are additional operators that
are required too.

As an application of including external fields in �PT, we shall consider the weak
decay of the pion. The charged pion decay process, � ! �C��, arises from theW -
boson of the weak interaction, as shown in Fig. 4.3. The left-handed quark current
that couples to the weak boson is contained in the interaction Lagrangian

�LW D W �
� J

C
�;L; with JC

�;L D  L�
C�� L: (4.22)

The strong interaction part of the decay factorizes into a matrix element between the
left-handed current and the pion,

h0jJC
�;Lj�.p/i D ip�f� ; (4.23)

where we have parameterized the matrix element based on Euclidean invariance
and discrete symmetries. As a result, the parameter f� , known as the pion decay
constant, is a real-valued parameter. While the weak interaction occurs at the scale
� � MW , the nonperturbative QCD matrix element should be evaluated at a
scale � � �QCD. In quark-mass–independent renormalization schemes, however,
the non-singlet left-handed current is conserved and, therefore, has vanishing
anomalous dimension. Consequently, the pion decay constant is independent of
scale.

Fig. 4.3 Weak decay of the
charged pion through the
W -boson and its subsequent
decay
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With the nonperturbative physics parameterized, evaluating the decay process is
a standard quantum field theory exercise, which gives the decay width

��!�C�� D
G2
F

8�
f 2
� m

2
�m� jVudj2

 
1 � m

2
�

m2
�

!2
; (4.24)

from which we infer the value f� D 132MeV. We can use this value to fix one
of the low-energy constants of �PT. The left-handed quark current matches onto
operators in the effective theory. Using the order-p2 chiral Lagrangian, we have

J a�;L D
@L�PT

@La�

ˇ̌
ˇ
L�DR�D0 D

f 2

4
Tr
�
i�a˙@�˙


� D f

2
Tr
�
�a@��

�C � � � (4.25)

Computing the pion decay constant in the effective theory at tree level gives us
the matching condition, f� D f . A one-loop computation will produce chiral
corrections to the matching of the form f� D f


1C Bmq

�
logmq C C

��
, whereby

we see f is the chiral-limit value of the pion decay constant.
While f happens to show up in the weak decay of the charged pion, this

parameter plays an important role in strong-interaction physics. The size of f
controls the efficacy of the chiral expansion, because it governs the size of non-
Gaußian fluctuations about the vacuum. Let us define the chiral symmetry breaking
scale �� D 2

p
2�f � 1:2 GeV. Because our power-counting scheme gives us

an expansion in the number of loops, we see each loop in four dimensions will
be accompanied by a factor of 1=�2

�. Thus dimensionless parameters governing
the size of chiral corrections are m2

�=�
2
�, and p2=�2

�, where p is the momentum
involved in a typical process.

5 The masses of hadrons are affected by electromagnetism (Fig. 4.4).
Construct all leading-order electromagnetic mass operators by promoting the
electric charge matrix to fields transforming under the chiral group. (Notice
that no photon fields will appear in the electromagnetic mass operators,
because there are no external photon lines.) Which pion masses are affected
by the leading-order operators? Finally, give an example of a next-to-leading-
order operator, or find them all.

Fig. 4.4 Feynman diagrams depicting long-range QED corrections to the pion mass
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4.3 Applications Tailored to Lattice QCD

Above, we have detailed the construction of the chiral Lagrangian, and investigated
the computation of low-energy QCD observables using this effective theory. The
results of such computations are parametrizations of the quark-mass dependence of
low-energy observables, with coefficients that must ultimately be determined from
phenomenology or lattice QCD computations. The parameterizations, moreover,
can be used for the extrapolation of lattice-QCD data at unphysical light-quark
masses to their physical values. There are additional applications of chiral per-
turbation theory tailored to lattice QCD. In this section, we consider the partially
quenched approximation to QCD, effects of finite lattice volumes, and effects of
finite lattice spacings.

4.3.1 Partially Quenched QCD

Treating the valence and sea quarks in QCD differently is unphysical; however,
it can be quite natural from a practical, numerical point of view. Consider the
evaluation of the matrix element of an operator O between hadron states H and
H 0. On the lattice, one computes Wick contractions between source and sink, which
schematically have the form

hH 0jOjH iQCD D
Z

DA� Det
�
D= Cmq

�
e�SŒA�� 1

D= Cmq

� � � 1

D= Cmq

: (4.26)

In the early days of lattice QCD, one encountered the quenched approximation, in
which the above matrix element is calculated without the quark determinant,

hH 0jOjH iQQCD D
Z

DA� e�SŒA�� 1

D= Cmq

� � � 1

D= Cmq

: (4.27)

This approximation has various theoretical complications; however, a number of
physical observables are insensitive to effects of the QCD vacuum polarization. One
way to view the quenched approximation to QCD is a version of QCD with valence
and sea quarks, where the latter have masses that are above the ultraviolet cutoff
scale. This view suggests another approximation to QCD, the partially quenched
approximation, in which the hadronic matrix element of O is calculated as

hH 0jOjH iPQQCD D
Z

DA� Det .D= Cmsea/ e
�SŒA�� � (4.28)

1

D= Cmval
� � � 1

D= Cmval
:
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Matrix elements calculated in this approximation reduce to QCD matrix elements by
choosing the valence and sea quark masses to be degenerate,mval D msea. The par-
tially quenched paradigm is useful to have in mind when considering mixed-action
simulations, where in essence one replaces Det

�
D= Cmq

�! Det
�
D= sea Cmq

�
, and

when considering the effects of neglecting quark-disconnected diagrams.
For PQQCD computations, the natural questions are whether the quark-mass

dependence can be addressed in a model-independent fashion, and whether artifacts
of the approximation can be removed in order to connect with QCD physics. The
theoretical technique to address such questions was first suggested for QQCD in
[183]. The basic idea is as follows. A theory that reproduces the matrix element in

Eq. (4.28) contains bosonic quarks, Q D
� Qu
Qd
�

, in addition to fermionic quarks, the

valence quarks  D
�

u
d

�
, and the sea quarks  0 D

�
u0
d 0
�

, namely

LPQQCD D  .D= Cmval/ C  0 .D= Cmsea/  
0 C Q .D= Cmval/ Q 

� � �D= CmPQ
�
�; (4.29)

where � is the graded vector, � D
0
@  0
Q 

1
A, whose upper components  and  0

are Grassmann fields, and lower components Q are bosonic fields. The bosonic
functional integration produces a factor of Det .D= Cmval/

�1 which cancels the
determinant produced from the fermionic valence quark functional integration. As a
result, a net determinant factor is produced only from the sea quarks. In computing
operator matrix elements, the external sources are built from valence quarks, and
their contribution to the vacuum polarization is exactly canceled by the degenerate
bosonic quarks. The vacuum polarization arises solely from sea quarks, see Fig. 4.5.

These observations were employed to construct PQ�PT [184–186]. The relation
of parameters in the partially quenched chiral Lagrangian to those in �PT was
rigorously established in [187, 188], where further technical details can be found.
As a caveat, we will summarize the approach with less rigor, and the careful reader
will want to review the technical details in order to confidently utilize the results.

Fig. 4.5 Partially quenched QCD vacuum polarization at one loop. Thin lines depict valence
quarks  , dashed lines depict bosonic quarks Q , and thick lines depict sea quarks  0. Due to
mass degeneracy between valence and bosonic quarks, the net contribution arises solely from the
sea
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In the massless limit, the partially quenched Lagrangian exhibits graded sym-
metries. These are symmetries under which bosonic and fermionic fields transform

into one another. We write the partially quenched quarks as �A D
�
 a
�˛

�
, with all

fermionic quarks packaged in  a, and bosonic quarks in �˛. Under a graded unitary
transformation, U 2 U.4j2/V , we have the quark transformation �A ! UAB �B .
Written in blocks, U must have the form

UAB D
�
A4�4 B4�2
C2�4 D2�2

�
AB

; (4.30)

where A and D are ordinary matrices, while B and C are matrices with Grassmann
entries. This grading ensures that the transformed fermionic fields, for example,
remain fermionic. Suppose MAB is a supermatrix transforming under the adjoint,
MAB ! ŒUMU�AB, then the invariant graded trace (supertrace) is given by

Str .M/ �
X
A

.�/g.A/MAA D
X
a

Maa �
X
˛

M˛˛; (4.31)

where the grading factors are defined by g.a/ D 0 and g.˛/ D 1.

6 Show that the graded trace is invariant under graded unitary transforma-
tions.

The partially quenched �PT Lagrangian is constructed by taking into account
the pattern of spontaneous and explicit breaking of chiral symmetry in PQQCD.
Schematically the massless PQQCD Lagrangian possesses a graded chiral symme-
try of the form SU.4j2/L˝SU.4j2/R that we assume is spontaneously broken down
to the vector subgroup, SU.4j2/V . The emerging Nambu-Goldstone bosons live in
the coset, ˙ D e2i˚=f , where we take ˚ to be a U.4j2/matrix

˚ D

0
B@
�  �  0

� Q 
� 0 � 0 0

� 0 Q 
� Q  � Q  0

� Q Q 

1
CA ; (4.32)

which contains both bosonic and fermionic mesons. Taking into account the explicit
chiral symmetry breaking due to the PQQCD mass matrix mPQ, we arrive at the
chiral Lagrangian

LPQ�PT D f 2

8
Str
�
D�˙

D�˙
� � � Str

�
mPQ˙

 C˙mPQ
�C 1

2
�20 ŒStr .˚/�2 :

(4.33)
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Notice we retain the singlet meson in the theory, ˚0 D Str .˚/ D �0
val C �0

sea � Q�0.
This is only a convenient device. In PQQCD, the U.1/A symmetry is anomalous
just as in QCD, and the flavor-singlet meson needs to be integrated out of the low-
energy theory. Computation of the flavor-neutral meson two-point functions can be
carried out easily with the mass term, �20, treated as an interaction and summed
to all orders. The limit �0 ! 1 produces the correct theory corresponding to
SU.4j2/L˝ SU.4j2/R. The resulting neutral-meson propagators have double poles,
which indicate unitary violation in the partially quenched theory. Unitarity is never
demanded of an effective theory, and the claim is that the peculiar lack of unitarity
of PQQCD is captured at low energies by PQ�PT.

After the singlet meson has been integrated out, one can establish that the
parameters f and � of the leading-order PQ�PT Lagrangian are numerically
identical to those in �PT. The proof utilizes a trick. One considers the computation
of quantities involving mesons flavored only with sea quarks. In this sector of
the theory, PQQCD Green functions are identical to QCD Green functions with
mq D msea. As a result, the exact parameters of �PT must appear in PQ�PT,
although the latter also contains additional parameters. These further terms must
be accounted for, and their effects removed to recover QCD physics from PQQCD.
Additionally, the valence- and sea-quark mass dependence is described by PQ�PT,
and must be utilized to extrapolate lattice data to the unitary point,msea D mval.

7 Find the tree-level masses of all charged mesons using partially quenched
chiral perturbation theory.

4.3.2 Effects of Finite Volume

Lattice QCD computations by necessity utilize finite volumes. Because pions
are the lightest hadrons, the long-range physics of low-energy QCD is modified
predominantly due to pion effects. In considering finite-volume field theories, we
must specify boundary conditions and choose them to be periodic for simplicity.
Such boundary conditions lead to a number of salient features: the finite volume
action is single valued on a hypertorus, consequently there are no surface terms;
discrete translational symmetry is maintained, consequently periodic boundary
conditions are not renormalized.

Let � be a generic field satisfying �.x C L/ D �.x/, where L is the length of
each spacetime direction. The Fourier-mode expansion, �.x/ D R

k
eikx�k , coupled

with periodicity leads to momentum quantization, k D 2�n
L

, where n is any integer.
This simplicity is quite profound. All of the effects of finite volume follow from
the quantization condition. As an example, consider Euclidean SO.4/ invariance.
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On a finite periodic volume, this continuous invariance is reduced to a discrete
permutation symmetry. The rest-frame matrix element measuring the electric charge
of a particle, h�.0/jJ�j�.0/i D Qı�4, does not lead to the usual current in a
frame moving with velocity v, so that h�.v/jJ j�.v/i ¤ Qv, due to the lack of
boost covariance. This may seem paradoxical, because gauge invariance, the Ward-
Takahashi identity, and the Ward identity place constraints on the matrix elements
of conserved currents. Ordinarily these three notions are used interchangeably;
however, the Ward identity ceases to be valid. This finite-volume effect is exposed
in [189]. Here, we explore finite-volume effects on pion dynamics in two distinct
regimes.

4.3.2.1 Zero Pion Momentum

Strictly speaking, spontaneous symmetry breaking does not occur in finite volume.
The reason is that spontaneous symmetry breaking is a classical phenomenon
requiring infinitely many degrees of freedom. In quantum mechanics, a state
prepared in one of a few degenerate ground states will acquire an admixture of
the other states due to quantum tunneling. The dynamics of the theory governs
tunneling, and over time the state will end up in a symmetric superposition of the
degenerate ground states. In quantum field theory, the tunneling probability depends
on the transition from two configurations on the group manifold, a and b. For

uniform configurations, the tunneling probability, P � exp
�
�V R b

a
V.�/d�

�
, is

exponentially suppressed by the infinite spacetime volume V . At finite volume,
such tunneling occurs, and the vacuum state will tunnel symmetrically, thereby
completely respecting the symmetric dynamics of the underlying action. In QCD,
chiral symmetry can be restored at finite volume, and the effect can be deduced by
carefully considering the effect of momentum quantization on pion dynamics.1

To expose the mechanism behind chiral symmetry restoration, we consider the
computation of the chiral condensate in finite-volume �PT at one-loop order. To use
�PT in a finite volume, the box size cannot be smaller than the chiral symmetry
breaking scale, that is L 	 ��1

� , otherwise there is no low-energy dynamics
in the theory. Above, in Eq. (4.19), we calculated the infrared chiral logarithm,
� m2

� logm2
� , which modifies the value of the chiral condensate away from the

chiral limit. In finite volume, the one-loop diagram now requires a momentum mode
sum rather than a momentum integral:

1Analogous to the situation at finite volume is the finite-temperature case, ˇ D 1=T < 1. The
equilibrium quantum field theory has a path-integral representation in terms of the QCD action
defined with a compact Euclidean time, 0 < x4 < ˇ. Statistics demands periodic boundary
conditions for bosons, and anti-periodic boundary conditions for fermions. In �PT, the restoration
of chiral symmetry at finite temperature is linked with the Matsubara modes of the pions.
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1
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4�2n2� C .m�L/2

3
5 :

(4.34)

In the sum, we have separated out the contribution from the zero-momentum
mode, n� D .0; 0; 0; 0/. The one-loop correction vanishes in infinite volume when
m� D 0, while in finite volume the zero mode leads to singular behavior in the
infrared.

The longest-range piece of the pions, their zero-momentum mode, has become
strongly coupled. The effect must be treated nonperturbatively and requires refor-
mulating the power counting at finite volume [190]. Let " denote a generically small
quantity. We assign the counting of physical parameters as follows. The length L is
considered large, and so 1

L
counts as ". The pion mass is chosen to count asm� � "2.

This creates a dichotomy in the leading-order Lagrangian: the derivative vertices
count as @�@� � "2, unless they are zero modes, whereas the quark mass insertion
is considered smaller, mq � m2

� � "4. As a consequence, the pion propagator
has two very distinct pieces. The propagation of zero modes counts as "�4, while
nonzero modes count as "�2. The enhancement of zero modes over nonzero modes
in the power counting encapsulates the chiral limit at finite volume.

To count powers of " for a generic Feynman diagram, we further require the
counting of loop factors. Each loop requires the mode summation 1

L4

P
n�

which

counts as "4. For a diagram with I internal lines, V vertices from the leading-
order Lagrangian, and L loops, we have now various scalings with " possible
depending on whether derivatives or quark mass insertions are at each vertex, and
whether zero or nonzero modes are propagating. Diagrams having a quark-mass
insertion at each vertex and only zero modes propagating count as "4LC4V�4I , which
simplifies dramatically to "4 on account of the Euler identity. On the other hand,
diagrams with only derivative vertices and nonzero modes propagating count as
"4LC2V�2I D "2LC2. The nonzero momentum modes of the pion still obey a loop
expansion. Diagrams with only zero modes, however, are all equally important.

8 Do the leading-order four-pion interactions allow mixing of zero and
nonzero modes? Draw all one- and two-loop diagrams for the chiral conden-
sate and count powers of ".

The "-regime power counting requires that the zero-momentum mode be treated
nonperturbatively. Fortunately, the zero-momentum mode is the simplest mode, and
can be separated out from the coset using the decomposition ˙.x/ D ˙0e

2i Q�.x/=f ,
where ˙0 is the zero mode, and the nonzero modes reside in Q�.x/. Taking into
account only the zero mode, the partition function for �PT becomes a matrix model,
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Z�PT D
Z

D˙0 e
1
2 sTr

�
˙

0C˙0

�
; (4.35)

where the matrix integral represents averaging the direction of the chiral condensate
over the coset manifold. The scaling variable s includes the spacetime volume V ,
and is defined by s D 2mq�V D 1

4
. fL/2.m�L/

2. In SU.2/, the matrix integral can
be evaluated in terms of a modified Bessel function, Z�PT D 1

s
I1.2s/. This result,

in turn, can be used to find the behavior of the chiral condensate as a function of s
in the "-regime via Eq. (4.12). We plot this dependence in Fig. 4.6. If one takes the
chiral limit at finite volume, chiral symmetry is restored. Chiral symmetry breaking
can be achieved in a finite volume provided the pion Compton wavelength is small
compared to the lattice size, 1

m�

 L, for which s is large and the identity matrix

becomes the preferred direction for the condensate to point.

4.3.2.2 Zero Pion Winding

To avoid finite-volume restoration of chiral symmetry, we require m�L 	 1

to ensure the zero-momentum modes of pions do not become strongly coupled.
Provided this condition is met, finite-volume corrections should be perturbatively
small, as pions only interact weakly with their periodic images. With small pion
Compton wavelengths, we need to focus on corrections near zero pion winding
number, rather than on zero pion momentum. This can be achieved systematically
using p-regime power counting [191].

In the p-regime, we no longer distinguish between zero and nonzero momentum
modes of pions. As a result, we count the pion mass and derivatives at the same
order, m� � p, and @� � 1

L
� p. This is the same power counting as in infinite

volume. The only exception is that the quantization condition restricts available
momenta. Consequently, the pion propagator and leading-order vertices scale with
the same power of p as in infinite volume. Each loop brings along the momentum
mode sum, 1

L4

P
n�

, and counts as p4. A general Feynman diagram with I internal

lines, V leading-order vertices, and L loops counts as p4L�2IC2V D p2LC2. This
power counting leads to a loop expansion identical to that in infinite volume. The

Fig. 4.6 Modification of the
chiral condensate in the
"-regime. Shown as a
function of the scaling
variable, s D 1

4
. fL/2.m�L/

2 ,
is the finite-volume depletion
of the chiral condensate
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essential difference is that the evaluation of Feynman graphs requires momentum-
mode sums rather than momentum integrals.

Now in the p-regime, momentum-mode sums are not ideal. We prefer that
contributions from loop graphs be expressed in a winding number expansion,
rather than in terms of periodic momentum modes. Indeed, the external states are
assumed to be projected onto good momenta; however, virtual quantum fluctuations
span the range of all available momenta. Their contribution to observables is best
expressed in position space. The Poisson re-summation formula allows us to recast
the momentum mode sums into an expansion in winding number. Before deriving
this formula, we recall the definition of the Dirac-delta function on a compact space,

ıL.x � y/ D 1

L

1X
nD�1

e2� in.x�y/=L; for x; y 2
�
�L
2
;
L

2

�
; (4.36)

which by inspection has the correct L!1 limit.
In considering loop sums, we can enforce the quantization of momentum using

the Dirac comb,

1

L

1X
n�1

ı.k � 2�n=L/ D
Z 1

�1
dx

2�
e�ikx 1

L

1X
nD�1

e2� inx=L; (4.37)

where k is a continuous variable, and accordingly has a Fourier transform in terms
of a noncompact variable x. We can partition the real line in terms of an infinite
number of cells having length L, that is

R1
�1 f .x/dx D P1

�D�1
R �LCL=2
�L�L=2 f .x/dx.

Translating the latter integrals so that they are all centered about x D 0, we haveR1
�1 f .x/dx D P1

�D�1
R CL=2

�L=2 f .x � �L/dx. Applying this partition to the Dirac
comb, we have the Poisson formula

1

L

1X
n�1

ı.k � 2�n=L/ D
Z C L

2

� L
2

dx

2�
e�ikx

1X
�D�1

eik�L ıL.x/

D 1

2�

1X
�D�1

eik�L: (4.38)

To utilize the Poisson formula to compute finite-volume corrections, we first
observe the momentum-mode expansion of the finite-volume propagator

DFV.x; 0/ D 1

L

1X
nD�1

e2� inx=LG.2�n=L/; (4.39)

whereG.k/ D Œk2Cm2��1 is the Euclidean momentum-space propagator in infinite
volume. In light of Eq. (4.38), we have the winding-number expansion
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DFV.x; 0/ D
1X

�D�1
D1.x C �L; 0/; (4.40)

in terms of the infinite-volume coordinate-space propagatorD1.x; 0/. The infinite-
volume limit arises from � D 0, whereas nonzero winding numbers account for
volume corrections from periodic images.

The functional form of the coordinate-space propagator is all we need to
derive finite-volume corrections in the p-regime. In Euclidean space, we have the
propagator

D1.x; 0/ D m

4�2
p
x2
K1.m

p
x2/

x2!1�! m2

2.2�m
p
x2/3=2

e�mp
x2 C � � � (4.41)

To compute the finite-volume modification to the chiral condensate, for example, we
realize that the bubble diagram is proportional to DFV.0; 0/, which can be written
in the winding-number expansion using Eq. (4.40). Taking into account the � D ˙1
images in each spatial direction gives us the result

h  i D h  i1mqD0
�
1C 3m2

�

.4�f /2

�
log

�2

m2
�

C 1 � 12p2� e�m�L

.m�L/3=2

�

�m
2
�

f 2
L4.�/

�
: (4.42)

In this regime, corrections to the condensate are exponentially suppressed due to the
propagation of pions around the world.

9 In addressing finite-volume corrections, one typically considers lattices
with a finite spatial volume and infinite temporal extent. Why is this done?
How would the above results be modified? Now consider the pion mass. How
does it scale with volume for asymptotically large spatial volumes?

4.3.3 Lattice Discretization Effects

As a final application of �PT tailored to lattice QCD, we consider effects of the
lattice discretization. In order to connect lattice data to QCD physics, one needs to
take the continuum limit. Because �PT is a low-energy effective theory, taking the
lattice spacing to zero naïvely does not play a role in the long-range physics. Most
solutions to the fermion doubling problem, however, break chiral symmetry at zero
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quark mass. In this way, properties of the theory’s most infrared modes results from
the nature of the short-distance regularization.

Near the continuum, the lattice spacing is small compared to strong-interaction
scales, a
 ��1

QCD, and the lattice action can be described by an effective continuum
theory, know as the Symanzik effective action [18]. This theory shares all of the
symmetries of the lattice action (gauge invariance, hypercubic invariance, C , P ,
T , : : :), but is written in terms of continuum operators and organized in powers of
the lattice spacing:

SSymanzik D S0 C aS1 C a2S2 C � � � : (4.43)

At each order, there is a finite set of operators, Si DPj c
.i/
j O.i/

j , with contributions
from higher-dimensional operators becoming less relevant in the continuum limit.
Coefficients c.i/j run weakly with logarithms of the lattice spacing. The leading-order

term is just the QCD action, namely S0 D  
�
D= Cmq

�
 , although fine tuning may

be required to remove relevant contributions of the form 1
a
S�1, so that the continuum

limit exists. By writing Eq. (4.43), we assume any necessary fine tuning has been
carried out. Notice that at leading order, Euclidean invariance accidentally appears.
Operators breaking Euclidean invariance, e.g.  ��D�D�D� , become irrelevant
in the continuum limit.

To account for the effects of discretization on low-energy physics, we must
understand how operators of the Symanzik effective action map into �PT. For
illustrative early references on the subject, see [192, 193]. The Wilson action, for
example, eliminates fermion doubling at the cost of explicitly breaking chiral sym-
metry. As a result, chiral symmetry is not imposed on the operators of Symanzik’s
effective action. This allows for a relevant operator, 1

a
  , that necessitates fine

tuning in order to attain light quarks. After such tuning, the leading chiral symmetry
breaking operator is contained in the term [194]

S1 D cSW
�
 L
��F�� R C  R
��F�� L

�
: (4.44)

This term breaks chiral symmetry precisely the way the quark mass does, and its
effects can be incorporated into �PT by including the operator

�L�PT D �acSW�a Tr
�
˙ C˙� : (4.45)

As a result, the pion mass depends on the lattice spacing,

m2
� D 8

f 2

�
mq�C a cSW�a

�
:

Infrared enhancements due to chiral logarithms now take the form

� logŒm2
�.mq; a/�:
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One should note that improvement of the action will diminish the size of the
coefficient cSW, and hasten the approach to the continuum limit. Furthermore, our
discussion tacitly assumes the product cSW�a is positive, otherwise one can enter
the Aoki phase [195].

Another example of discretization effects concerns mixed-action simulations.
For computational economy, one can employ different lattice fermion actions for
valence and sea quarks. Lattice collaborations have chosen various options so far:
domain-wall valence quarks on staggered sea quarks, overlap valence quarks on
domain-wall sea quarks, etc. The effects of a mixed action on low-energy physics
can be deduced by accounting for the symmetry breaking pattern [196]. Because
mixed actions distinguish between valence and sea quarks, the Symanzik effective
action is a partially quenched theory. In the combined chiral and continuum limits,
the partially quenched theory possesses a graded chiral symmetry, SU.4j2/L ˝
SU.4j2/R. At finite lattice spacing, however, this chiral symmetry is explicitly
broken because no symmetry relates valence and sea quarks. Dimension-6 operators
in the Symanzik action lead to a reduction of the chiral symmetry down to
SU.2j2/L ˝ SU.2j2/R ˝ SU.2/L � SU.2/R. Consequently the masses of mesons
formed from one valence and one sea quark, �  0

and � 0 from Eq. (4.32), are not
protected from additive renormalization. As a result their masses have a shift

�.m2
�  0

/ D �.m2
� 0 

/ D a2�mix (4.46)

that depends quadratically on the lattice spacing. The behavior of chiral logarithms
is modified, but only for those generated by valence-sea meson propagation. Mixed-
action �PT can be employed to understand the combined quark-mass and lattice-
spacing dependence of mixed-action lattice-QCD data. For a general discussion of
applications, see [197, 198].

10 Write down all dimension-6 four-quark operators in the Symanzik
effective action for a general mixed-action theory. Classify the operators
according to symmetry. Which ones are absent in a theory describing Wilson
valence quarks and overlap sea quarks?

4.4 Including the Nucleon

To include the nucleon and other baryons in �PT, we are confronted with a puzzle.
The nucleon mass is not a low-energy scale. By contrast, it is on the order of the
chiral symmetry breaking scale, MN � ��. The presence of this large scale would
seem to complicate the inclusion of the nucleon into �PT. One is not deriving
the nucleon from chiral dynamics, however, one is investigating the effect chiral
dynamics has on the nucleon. With this view in mind, we include the nucleon as an
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external source of isospin and describe small energy fluctuations about the nucleon
mass, p 
MN � ��, as first suggested in [199].

To account for the quark-mass dependence of nucleon properties using �PT,
we require the chiral-limit value of the nucleon mass, M . This quantity requires a
digression. How can the chiral-limit mass M arise from nothing? In QCD, we have
the energy-momentum tensor T�� , whose matrix element between nucleon states
must have the form

hN.k/jT�� jN.k/i D �k�k�
MN

(4.47)

on account of Euclidean invariance and dimensional analysis. The trace of the
energy-momentum tensor thus has a matrix element equal to the nucleon mass,
hN.k/jT��jN.k/i D MN . At the classical level, the energy-momentum tensor’s
trace is simply T�� D mq  . Consequently,M D 0 in the chiral limit.

While these considerations apply at the classical level, QCD exhibits a trace
anomaly, which is tied to the fact that QCD cannot be defined without a scale. Taking
into account quantum corrections, the trace of the energy momentum tensor has the
form

T�� D ˇ

2g3
F A
��F

A
�� Cmq  (4.48)

with ˇ as the QCD beta function. Due to the trace anomaly, the chiral-limit mass
is nonvanishing, M D hN.k/j ˇ

2g3
F A
��F

A
�� jN.k/i. The Higgs mechanism does not

have a monopoly over all the mass in the universe. Furthermore, on account of
the trace of the energy-momentum tensor’s form, we can hazard a guess about the
quark-mass dependence of the nucleon mass,MN DMC
 mqC
2 m2

qC� � � , which
corresponds to pion-mass dependence of the formMN DM CAm2

� CB m4
� C� � �

up to logarithms. This guess is not too far off, however, we will find further non-
analytic dependence on the quark mass.

11 Is the trace of the energy-momentum tensor the divergence of a current?

4.4.1 Heavy Fermions

To work with small fluctuations about the chiral-limit value of the nucleon mass,
we treat M as a large energy scale and write the nucleon momentum as k� D
Mv� C p�, with p 
 M . The uncertainty relation �k�x � 1

2
becomes �v�x �

1
2M

for particles of large mass, and simultaneously specifying position and velocity
becomes possible.
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We can see the consequences at the level of the nucleon propagator. For the free
action, we have

1

ik=CM D �iMv=CM � ip=

2Mv � p C p2 D
1

v � pPC CO
� p
M

�
(4.49)

with the nonrelativistic projectors given by P˙ D 1
2
.1� iv=/. These projectors

can be used to simplify the spin algebra; for example, one can easily demonstrate
the identity �P˙��P˙ D ˙iv�P˙. Heavy-fermion propagators lead to dramatic
simplifications in Feynman diagrams. Rather than rediscover these simplifications
for each diagram, it is convenient to separate out the nonrelativistic modes directly
at the level of the nucleon action. The relativistic fluctuations can then be integrated
out of the functional integral.

To make explicit the separation of scales, we decompose the nucleon field into
two parts,

N.x/ D eiMv�x ŒPCNv.x/C P�Nv.x/� : (4.50)

Because of the explicit phase factor, derivatives acting on the nucleon field will
produce either the large momentum, Mv�, or the small residual momentum p�. At
the level of the free nucleon action, we have

L D N .@=CM/N

D N viv � @PCNv �N v .iv � @ � 2M/P�Nv Cmixing: (4.51)

The positive projection of the nucleon,Nv, corresponds to a nonrelativistic nucleon
whose energy is measured relative to zero. The negative projection, Nv, on the other
hand, corresponds to the negative-energy solution which lies 2M away from the
positive-energy solution, see Fig. 4.7. The mixing terms between these two fields
give rise to a tower of recoil corrections after the field Nv is integrated out.

12 Integrate out the remaining massive component of the nucleon field to
find the first-order correction to the static-nucleon Lagrangian. The result
should not surprise you.

Fig. 4.7 The heavy-fermion
approach repositions the zero
energy level at the fermion
mass M
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13 The nonrelativistic projectors reduce the spin algebra to that of Pauli
matrices. Show that the axial-vector fermion bilinear reduces to the spin
density operator up to a constant, that isN v���5Nv D cN vS�Nv. The relation
PCNv D Nv will prove useful, as will the definition of the spin vector
S� D � i

4M
"���

��k
 , which satisfies S�S� D 1

2

�
1
2
C 1�. What are v�S�

and ŒS�; S��?

4.4.2 Heavy-Nucleon �PT

With the large chiral-limit mass of the nucleon M phased away, the derivative
expansion is valid: @�Nv � p with p 
 M � ��. From this point forward,
we work exclusively with the heavy-nucleon field Nv, and for notational simplicity
we strip away the velocity subscript. The goal is to combine the heavy-nucleon limit
with chiral perturbation theory to build a tool with which we can address the quark-
mass dependence of nucleon properties, pion-nucleon interactions, and so forth.

The nucleon field is an isodoublet of the proton and neutron, N D
�
p

n

�
.

This translates into the transformation property, Ni ! VijNj under an SU.2/V
transformation. On the surface, it appears that we need to know how the nucleon
transforms under SU.2/L ˝ SU.2/R in order to take into account the pattern of
spontaneous and explicit chiral symmetry breaking in QCD. This situation would be
unfortunate, because it is unknown to which chiral multiplets the nucleon belongs.
A nice discussion and a conjecture are given in [200].

Let us temporarily assume a simple scenario for the nucleon. In the chiral limit,
imagine that the nucleon has the charge assignment . 1

2
; 0/˚ .0; 1

2
/ under SU.2/L˝

SU.2/R. That is, the nucleon can be written as the sum of left- and right-handed
fields, NL and NR, which transform as NL ! LNL and NR ! RNR under chiral
transformations. These fields can then be dressed with pions. For example, taking
QNL � ˙NR, and QNR � ˙NL, we have defined fields with exactly the same

transformation properties as the original nucleon. Because pions are massless in the
chiral limit, moreover, it is not possible to discern between these two possibilities.
The nucleon will always be dressed with soft pion radiation, and this presents an
infrared ambiguity in distinguishing between a nucleon, and a nucleon plus any
number of soft pions.

To exploit the infrared ambiguity, we define the field � D p˙ . Under a chiral
transformation, we have � ! p

L�2R � L�U , where U is a complicated
coordinate-dependent matrix, U D .L;R; �.x//. It is simple to show that L�U  D
U�R. Under the vector subgroup of transformations, we have � ! V �V . Now
one can use the � field to dress the nucleon differently with pions. From our
original chiral multiplet, we can define the fields MNL D �NR and MNR D �NL,
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which both transform the same way, MNL ! U MNL and MNR ! U MNR under
SU.2/L ˝ SU.2/R. Thus to whichever chiral multiplets the nucleon belongs, we
can always suitably dress with pions to define a physically indistinguishable nucleon
field that transforms asN ! UN under chiral transformations. This transformation,
moreover, respects the known vector transformation of the nucleon doublet.

We are now in a position to build the �PT Lagrangian including a heavy nucleon
field. The theory described by this Lagrangian is heavy-nucleon chiral perturbation
theory (HN�PT). To aid in its construction, we form the parity even and odd
combinations

A� D i

2

�
�@�� � �@��

�! UA�U


V� D 1

2

�
�@�� C �@��

�! UV�U  C U@�U ; (4.52)

where their chiral transformations are also given. From the vector-field built from
mesons, V�, we can form a covariant derivative that acts on the nucleon, D�N �
@�N C V�N , which satisfies D�N ! U.D�N/. The O.p/ HN�PT Lagrangian is
specified by two terms

LHN�PT D Niv �DN C 2gAN S �AN: (4.53)

The first term is the chirally covariant static-nucleon operator, which contains vector
couplings of the nucleon to even numbers of pions. These couplings are exactly
fixed by chiral symmetry. The second term contains spin-dependent axial-vector
couplings to odd numbers of pions. These couplings are not uniquely determined
in �PT, and therefore, we have assigned a low-energy constant gA to this term
(Fig. 4.8).

There are two further invariant terms at O.p/ that we did not write down.
These are Nv�N Tr

�
V�
�

and NS� N Tr
�
A�

�
. These happen to vanish, but

could become relevant when flavor-singlet external fields are turned on. To include
external fields, we promote the global symmetries to local ones. From left- and
right-handed gauge fields, L� and R�, we form the left- and right-handed gauge-
covariant derivatives,DL;� D @�C iL�, andDR;� D @�C iR�. These are then used
to gauge the vector and axial-vector fields built from mesons:

Fig. 4.8 Graphical depiction
of terms from the HN�PT
Lagrangian expanded to

O
�
1
f 2

�
. Solid lines denote

nucleons, while the dashed
lines denote pions
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A� D i

2

�
�DL;�� � �DR;��


�! UA�U



V� D 1

2

�
�DL;�� C �DR;��


�! UV�U  C U@�U ; (4.54)

which have the same transformation properties as their zero-field counterparts. The
leading-order HN�PT Lagrangian in external fields thus has exactly the same form
up to possible flavor-singlet couplings. Turning on flavor-singlet external fields, we
have simply Tr

�
V�
� D i

2
Tr
�
L� CR�

� D i Tr
�
V�
�

with V� the flavor-singlet
vector field, and Tr

�A�

� D � 1
2

Tr
�
L� � R�

� D Tr
�
A�
�

with A� the flavor-
singlet axial-vector field. The flavor-singlet vector coupling is exactly fixed by the
nucleon charge assignments,D�N D


@� C V� C Tr

�
V�
��
N .

14 In the chiral limit, the isovector axial current is a conserved current.
Is there a constraint on the quark isovector axial charge due to the non-
renormalization of this current? What about on the nucleon axial chargegA?

4.4.3 Quark-Mass Dependence of the Nucleon

To include explicit chiral symmetry breaking introduced by the quark mass, we
follow the spurion trick above. It is convenient to introduce the operators

M˙ D 1

2

�
�s� ˙ �s ��! UM˙U ; (4.55)

which have the simple chiral transformations in terms ofU listed. When the spurion
picks up a vev, the operators become M˙ D mq.˙ ˙˙/. The leading effects of
the quark mass on the nucleon are contained in the O.p2/ term

LM D 
 N MCN: (4.56)

Expanding this term to tree level, we find the expected linear quark-mass depen-
dence of the nucleon mass, MN D M C 
 mq C � � � . Beyond tree-level, there are
spin-independent nucleon interactions with an even number of pions contained in
the above term. Pion-nucleon scattering provides an avenue to determine 
 .
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15 Write down all strong-isospin–breaking mass operators up to second
order in the quark mass. What effect does isospin breaking in the pion mass
have on the nucleon mass? Deduce the behavior of the nucleon mass splitting
as a function of the quark masses.

The coefficient 
 is related to an important parameter called the pion-nucleon
sigma-term, which is defined by


N D 1

2MN

hN.k/jmq  jN.k/i: (4.57)

In HN�PT, we have just established that 
N D 
mq
2MN
C � � � . Determination of the

sigma term is relevant for the nucleon-mass spectrum, the strangeness content of
the nucleon, quark mass ratios, pion-nucleon scattering, and new-physics searches.

The sigma term is at the heart of the quark-mass dependence of the nucleon
mass. Using the Feynman-Hellmann theorem, we have the relation 
N D mq

2MN

@MN

@mq
,

which expresses the sigma term as the incremental change in nucleon mass with
respect to the quark mass. A quantity not-too-distantly related to the sigma term is
the strangeness fraction in the nucleon. This fraction is defined from the ratio of
matrix elements of scalar quark bilinear operators

y D hN.k/jssjN.k/i
1
2
hN.k/juuC dd jN.k/i : (4.58)

With some algebraic rearrangement, we can produce the relation

�
ms

mq

� 1
�
.1 � y/ 
N D ms �mq

2MN

hN.k/juuC dd � 2ssjN.k/i (4.59)

between quark masses, the strangeness fraction, and the pion-nucleon sigma term.
The strange quark will be considered further in the next section, and we will estimate
the matrix element on the right-hand side from phenomenology.

The sigma term makes an appearance in pion-nucleon scattering. In the isospin
zero channel, the scattering amplitude is constrained by low-energy theorems at the
Cheng-Dashen point, namely

1

2
f 2DID0.� D 0; t D 2m2

�/� Born D 
N C large corrections; (4.60)

where the Born subtraction refers to removing contributions from nucleon inter-
mediate states, �N ! N ! �N , and the large corrections scale as

p
mq . The

low-energy theorem can be reformulated in a faster-converging form by considering
the form factor of the sigma term, 
N .t/. In this case [201], the right-hand side can
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be replaced by 
N .t D 2m2
�/C �R, where �R � m2

q , and can be estimated using
HN�PT [202]. The problem is then to compute 
N .2m2

�/�
N .0/ in order to extract
the sigma term from data.

Finally, the sigma term is relevant for the detection of dark matter. In a typical
direct-detection experiment, one seeks to measure the recoil of nuclei that have
scattered elastically with dark matter. The scattering could be mediated through a
spin-independent interaction of the form � .��/

�
  

�
, where by the dark matter

particle � is coupled to light quarks. Another potential mechanism is from dark
matter coupling to the Higgs, and nuclear recoil arises from the Higgs coupling
to heavy quarks, � mQ

�
QQ

�
H . The Higgs coupling grows with quark mass,

however, the heavy-quark scalar density in the nucleon decreases with the mass
of the heavy quark. As a result, the product of the two is roughly constant for the
heavy quark flavors:

hN jmQQQjN i � 80 MeV

"
1 � 2
N

 
1C

Z ms=mq

0

y.x/dx

!#
; (4.61)

where the dominant uncertainty is not from perturbative treatment of the heavy
quarks but rather from subtracting out the contribution from light quarks, see [203]
for a clear discussion.

4.4.4 Beyond Leading Order

The linear quark-mass dependence of the nucleon mass is at O.p2/, and quadratic
dependence enters at O.p4/ from higher-order local operators. Loop diagrams
will produce non-analytic dependence on the quark mass, and the leading such
contribution arises from the sunset diagram, which counts at O.p3/, see Fig. 4.9.

To evaluate the sunset diagram, we recall the form of the heavy-nucleon
propagator in the rest frame, v� D .0; 0; 0; i/, namely

DN .x; 0/ D e�Mx4ı.x/�.x4/PC; with �.x4/ D
Z 1

�1
dp4
2�i

eip4x4

p4 � i� ; (4.62)

which is thus nonvanishing only for x4 > 0. For the heavy-particle formulation,
the pole prescription is required in Euclidean space. The heavy-nucleon propagator
must be treated as 1

p�v D �i
p4�i� D �iPV 1

p4
C �ı.p4/ for nucleons to propagate

forward in time. From this observation, we can evaluate the sunset diagram

Fig. 4.9 One-loop diagram
contributing to the nucleon
self energy at O.p3/
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/ g2A
f 2

Z
p

.p � S/2
p � v Œp2 Cm2

��
/
Z

p

.p � S /2
p2 Cm2

�

/
Z

p

1 �m2
�

Z
p

1

p2 Cm2
�

� �3 Cm2
� �Cm3

�; (4.63)

where in the second line, we have introduced an ultraviolet cutoff �. The cubic
divergence can be absorbed into the renormalized chiral-limit nucleon mass M ,
while the linear divergence can be absorbed into the renormalization of 
 . Both of
these power-law divergences are automatically subtracted in dimensional regulariza-
tion. The finite piece makes a contribution to the nucleon mass that is m3

� / m3=2
q .

Exhibiting this contribution, we see the nucleon mass has the expansion

MN DM C Am2
� �

3�g2A
.4�f /2

m3
� C B m4

�

�
log

�2

m2
�

C C
�
C � � � (4.64)

away from the chiral limit. From lattice-QCD computations of the nucleon mass, it
has proven challenging to expose this behavior, see Fig. 4.10.

Chiral perturbation theory can be used to compute chiral corrections to a variety
of nucleon observables, we refer the reader to an early review on the subject [205].
Of particular importance are matrix elements of quark bilinear operators,  �  .
These matrix elements can be parameterized in terms of various form factors, which
we generically denote by G.q2/, where q is a spacelike momentum transfer. The
value at zero momentum transfer, G.0/, is often a charge or a moment. The slope
of the form factor away from zero momentum transfer can be used to define an rms
radius, G.q2/ D G.0/� 1

6
q2hr2Gi C � � � .

One such bilinear operator is the isovector vector current, JC
� . Matrix elements

of this current are parameterized by

hN.p0/jJC
� jN.p/i D u0

�
v�G

C
E .q

2/C i"ijkqj 
k

2MN

GC
M.q

2/

�
u; (4.65)

Fig. 4.10 Pion mass
dependence of the nucleon
mass calculated with lattice
QCD. To a very good
approximation, the lattice
data lie along the straight line
MN D 0:80 GeV Cm� . We
thank A. Walker-Loud for
providing an updated version
of the plot in [204]
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where GC
E and GC

M are just differences between proton and neutron electric
and magnetic form factors, respectively. The isovector charge is protected from
renormalization by the Ward identity. The isovector electric radius has the behavior
hr2Ei D A

�
logmq C B

�
and diverges in the chiral limit. The isovector magnetic

moment has the expansion �I D �0 C Am1=2
q C B mq

�
logmq C C

�
, while the

isovector magnetic radius hr2M i D Am
�1=2
q C B �logmq C C

�
also diverges in the

chiral limit.
One can carry out the same analysis for the isovector axial-vector current, JC

�5.
Nucleon matrix elements of this current can be parameterized in terms of two form
factors, GA and GP ,

hN.p0/jJC
�5jN.p/i D 2 u0 S�GA.q2/ � q�S � qGP .q2/

�
u: (4.66)

The axial charge of the nucleon, GA � GA.0/, has a chiral expansion of the form
GA D gA C Amq

�
logmq C B

�
, while the axial radius has the expansion hr2Ai D

r2CAmq

�
logmq C B

�
. The pseudoscalar form factorGP .q2/ exhibits a pion pole

GP .q
2/ D gA

q2 Cm2
�

� 1
6
hr2Ai CO

�
m2
�

�
; (4.67)

because the derivative of the isovector axial-vector current has the quantum numbers
of a charged pion. Conservation of this current in the chiral limit, moreover,
produces a relation between GA.q2/ and GP .q2/ at vanishing quark mass [206].
To contrast the behavior of axial-vector and vector form factors, we see the axial-
vector size of the nucleon should be smaller than the vector size as one nears
the chiral limit. The axial-vector size arises from local interactions, whereas the
vector size is dominated by long-distance, charged pion loop contributions. Some
credence to this picture is provided by the experimental values: hr2Ai D 0:42 fm2,
and hr2Eip�n D 0:88 fm2.

The low-energy expansion of hadronic observables is limited by the nearest-lying
states that have been excluded. For pions, such higher-lying states are reasonably
well separated in energy; however, for the nucleon, the nearby�.1232/ resonances
often undermine the expansion of certain nucleon observables. The mass splitting,
� �M� �MN D 290 MeV, is not considerably greater than the pion mass. If one
imagines the strict chiral limit, m� 
 �, then these resonances can be integrated
out to arrive at HN�PT. On the other hand, for physical values of the parameters,
we might imagine m� � �, and these degrees of freedom should be retained. The
size of the axial couplings g�N and g�� gives a further phenomenological reason
to include Delta-resonance degrees of freedom explicitly. Systematic inclusion of
the �.1232/ in �PT is reviewed in [207]. While one might expect the inclusion of
further higher-lying resonances would improve the description of observables, these
higher resonances cannot be included in a low-energy theory. Such resonances have
strong decays which produce energetic pions that necessarily preclude a power-
counting scheme.
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4.5 Issues of Convergence

To begin this section, we remind the reader that perturbative expansions are assumed
asymptotic until proven otherwise. In expanding about the chiral limit, changing the
sign of the quark mass leads to vacuum instability from which we infer the chiral
expansion has zero radius of convergence. This is further evidenced by the non-
analyticities of �PT expressions. While the success of QED perturbation theory is
set by the smallness of ˛ D 1

137
, the chiral expansion is far from this ideal. Often

one is confronted with the need, either from lattice QCD or from phenomenology,
to consider expansion parameters not considerably less than unity. For this reason,
one should be aware of the limitations inherent to asymptotic series.

To illustrate these limitations, we consider a toy model provided by the integral

F.x/ D
Z 1

0

ds
e�s

1C sx
; (4.68)

where it is assumed that 0 < x 
 1. For negative values of x, the integrand has
a non-integrable singularity, thus any expansion about x D 0 has zero radius of
convergence. Ignoring this fact and blindly expanding the integrand gives the series

FN .x/ D
NX
nD0
.�/nnŠ xn; (4.69)

which diverges asN !1. Depending on the size of x, however, the first few terms
nevertheless give a good approximation to the function F.x/, as shown in Fig. 4.11.

For small values of x, namely x < 1
4
, increasing the number of terms in the

expansion from N D 1 to N D 3 gives a better approximation to the function
F.x/. Adding further terms, however, eventually breaks the trend. Because the
series has zero radius of convergence, adding further terms to the expansion limits
one to a smaller range of x for which a good approximation can be obtained. For

Fig. 4.11 Relative error in
approximating F.x/ by its
asymptotic expansion FN .x/
for N D 1–3
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the function at hand, the best approximation is attained for N � 1
x

. Thus to make
a better approximation for larger values of x, one should actually drop higher-order
terms in the expansion.

In �PT, one often goes to higher orders in the power counting to test the
convergence of the expansion. Doing so, however, brings along unknown low-
energy constants. If one knew the chiral-limit values of these parameters a priori,
then one could assess the convergence. When one uses phenomenology or lattice
data to fit the parameters, this task becomes considerably challenging.

In two-flavor �PT, we found that the chiral expansion of pion dynamics is
governed by the small parameter m2

�=�
2
� � 0:02, which should still be suitably

small for pion masses larger than physical. This is too idealistic in certain channels
where there are resonance contributions, and more realistic expansion parameters
that underlie �PT are m2

�=m
2
� � 0:03 and m2

�=m
2

 � 0:08. When considering the

chiral dynamics of the nucleon, we need the chiral limit value of the nucleon mass,
which is M D 0:80 GeV, see Fig. 4.10. The heavy-nucleon expansion is controlled
bym�=M � 0:2, and Delta-resonance contributions are controlled bym�=� � 0:5
if excluded, and

p
�2 �m2

�=M � 0:3 if included. We now investigate the state of
the three-flavor chiral expansion.

4.5.1 Including Strange Mesons

The strange-quark mass is smaller than the strong-interaction scale, ms=�QCD �
0:3, but not considerably so. Nevertheless, we can understand the low-energy
dynamics of QCD that emerges from having three nearly massless quarks, and
compare with nature.

Returning to the analysis of Sect. 4.2, the pattern of symmetry breaking in the
massless three-flavor case is SU.3/L ˝ SU.3/R ! SU.3/V , due to the formation
of the chiral condensate h  i ¤ 0. The coset SU.3/L ˝ SU.3/R=SU.3/V is
parameterized similarly to before, ˙ D e2i�=f , where ˙ ! L˙R under a
three-flavor chiral transformation. The vector transformation can be used to deduce,
� ! V�V , and so � describes an octet of mesons. These are conventionally
packaged as

� D

0
B@

1p
2
�0 C 1p

6
� �C KC

�� � 1p
2
�0 C 1p

6
� K0

K� K0 � 2p
6
�

1
CA : (4.70)

The quark masses, mq and ms , explicitly break chiral symmetry from SU.3/L ˝
SU.3/R down to SU.2/V ˝ U.1/V . This effect can be accounted for by the spurion
trick used above. Treating each of the quark masses as O.p2/, the leading-order
chiral Lagrangian has the form
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L�PT D f 2

8
Tr
�
@�˙

@�˙
� � �Tr

�
m˙ Cm˙� ; (4.71)

where m D diag .mq;mq;ms/. Aside from this difference, the form of the
Lagrangian is the same as that in the two-flavor case, although the values of the low-
energy parameters f and � are different. Their values are now determined by the
three-flavor chiral limit. At O.p4/, there are seven Gasser-Leutwyler coefficients,
and a few more when external gauge fields are included [208].

16 In the isospin limit, there are two different quark masses but three
different meson masses in the pseudoscalar octet. Use the three-flavor chiral
Lagrangian to derive the constraint,

�GMO D 4

3
m2
K �m2

� �
1

3
m2
� D 0; (4.72)

which was originally found by Gell-Mann and Okubo. What happens away
from the isospin limit?

The tree-level masses of the pseudoscalar mesons lead to the relation�GMO D 0
in Eq. (4.72). Inserting the neutral-meson masses and dividing by the average octet-
meson mass, we see that experimentally �GMO=m

2
� � 0:15. Beyond tree level,

this relation is modified by one-loop mass corrections, and local counterterms from
the O.p4/ Lagrangian. Estimating the size of such corrections leads to �GMO �
m4�

m 2
��

2
�

. In SU.3/ �PT, the �meson is the most worrisome. Fourth-order contributions

from the � should be � 35%. This is about the size of corrections needed for the
Gell-Mann–Okubo relation, but notice that a factor of two can seriously upset the
situation.

To expand about the three-flavor chiral limit, we must add to m2
�=�

2
� � 0:02

two further expansion parameters, m2
K=�

2
� � 0:23 and m2

�=�
2
� � 0:27. Pending

unfortunate numerical factors, O.p6/ contributions to meson quantities (which
include two-loop diagrams) should be � 10%. To work at this order, one must
introduce � 100 low-energy constants, which makes it difficult to address issues
of convergence. The comprehensive study of �PT predictions at next-to-next-to-
leading order allows one to form relations sensitive to only O.p6/ low-energy
constants. While most are not well known, one can use these relations to assess
the convergence of the three-flavor expansion, with the result that the expansion
“mostly works” [209].
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17 Revisit electromagnetic mass corrections in three-flavor �PT. Find all
leading- and next-to-leading-order electromagnetic mass operators. Ignoring
the up- and down-quark masses, which octet-meson masses are affected by
leading and next-to-leading operators?

18 Accounting for strong and electromagnetic isospin breaking to leading
order, compute the mass spectrum of the meson octet using �PT. Devise
a way to determine the quark mass ratios mu=md and md=ms using the
experimentally measured meson masses.

4.5.2 Including Strange Baryons

The lowest-lying baryons form an octet under SU.3/V and can be packaged in the
matrix

B D

0
B@

1p
2
˙0 C 1p

6
� ˙C p

˙� � 1p
2
˙0 C 1p

6
� n

�� �0 � 2p
6
�

1
CA ; (4.73)

which accordingly transforms as B ! VBV. While the chiral multiplets for these
baryons in the chiral limit are unknown, we are free to choose the SU.3/L˝SU.3/R
transformationB ! UBU due to the ambiguity in resolving a baryon, and a baryon
plus any number of soft octet mesons.

In the three-flavor chiral limit, the octet baryons are degenerate, with a mass
we denote by MB . This mass must be treated as a large scale, and the baryon
fields decomposed into heavy baryon fields. Their interactions with octet mesons are
constrained by the form of spontaneous and explicit breaking of chiral symmetry.
Construction of the heavy-baryon chiral perturbation theory (HB�PT) Lagrangian
proceeds similarly to that for the heavy nucleon. To aid in the construction, we
appeal to the vector and axial-vector fields built from mesons, V� and A� in
Eq. (4.52). The former can be used to build a chirally covariant derivative,D�B �
@�B C


V�; B

�
, which transforms as D�B ! U

�
D�B

�
U .

To O.p/, we have the gauged static-baryon term and two independent axial
interactions,

LHB�PT D Tr
�
Biv �DB

�C 2D Tr
�
BS�fA�; Bg

�C 2F Tr
�
BS�ŒA�; B�

�
:

(4.74)
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Further terms are required at O.p/ because of the nearness of spin- 3
2

baryon
resonances. These baryons form a decuplet under SU.3/V , so that Tijk !
V i 0

i V
j 0

j V
k0

k Ti 0j 0k0 , with Tijk completely symmetric. The size of the average mass
splitting between the octet and decuplet baryons, � � MT � MB D 270MeV,
necessitates inclusion of the decuplet because � � m� . Their leading-order
Lagrangian is given by

L.�/HB�PT D T � .iv �D C�/T� C 2H T �S �AT� C 2C
�
T �A�B C BA�T�

�
(4.75)

and includes an axial coupling of pions to the decuplet H , as well as an axial
transition coupling of pions to octet and decuplet baryons C . Notice the large mass
scale MB has been removed from the chiral-limit decuplet mass rather than MT .
While we could remove the mass of the decuplet fields, the splitting � would then
show up in time-dependent factors for the axial baryon transition, and these factors
would ultimately incorporate the baryon mass difference in Feynman diagrams
which involve both octet and decuplet baryons.

To include the leading-order effects of quark masses, we need terms of the O.p2/
Lagrangian. Focusing on the quark-mass dependence of the octet baryons, we have
three leading-order terms

Lm D bD Tr
�
BfMC; Bg

�C bF Tr
�
BŒMC; B�

�C b
 Tr
�
BB

�
Tr .MC/ :

(4.76)

Because there are three parameters and four octet baryon masses in the isospin
symmetric limit, there is a relation between the masses implied by leading-order
HB�PT, which has the form

MGMO DM� C 1

3
M˙ � 2

3
MN � 2

3
M� D 0: (4.77)

Experimentally, this relation is very well satisfied. Normalizing to the average octet-
baryon mass, we have MGMO=MB � 1%. Corrections to this relation can be
computed in HB�PT and first arise at O.p3/ from one-loop diagrams. Because
these contributions are non-analytic in the quark masses, there are no additional
parameters required beyond the various axial couplings entering the one-loop
diagrams.

To compute the one-loop corrections, we require the octet-baryon sunset dia-
gram, shown in Fig. 4.9. This diagram evaluates similarly to before. Additionally,
we require the sunset diagram shown in Fig. 4.12. The anatomy of this intermediate-
state decuplet contribution is as follows. By angular momentum, the virtual meson
must be in a relative p-wave, which at low energies requires the momentum
suppression factor p2` with ` D 1. This factor automatically appears in the
numerator when evaluating the Feynman diagram:
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Fig. 4.12 One-loop octet-baryon (B) self-energy diagram with intermediate-state decuplet (T )
baryon

� C2

f 2

Z
p

p2

Œip4 C��Œ.p4/2 C p2 Cm2
��
: (4.78)

The energy integral can be done by contour integration, which puts the meson on

shell with E� D
q

p2 Cm2
� . The diagram is then proportional to

C2

f 2

Z
p

p2

E�.E� C�/ �
C2

f 2

Z �

m�

dE�
.E2

� �m2
�/
3=2

E� C� ; (4.79)

where the numerator factor is a combination of p-wave suppression, p2 D E2
��m2

� ,

and the available two-body phase space near threshold,
q
E2
� �m2

� . In changing

variables, we have included an ultraviolet cutoff � to regulate the divergences. For
large meson energies, there are multiple divergences,

Z �

dE E2

�
1 � �

E
C �2

E2
� �

3

E3
C � � �

� 
1 � 3

2

m2
�

E2
C � � �

!

� �3 C��2 C�2�C�3 log�Cm2
� �Cm2

� � log�C finite: (4.80)

The first four terms are removed by the chiral-limit baryon-mass renormalization

condition, MN;˙;�;�

ˇ̌
ˇ
mqDmsD0

D MB . The remaining two divergences are pro-

portional to the quark masses. The first is a power-law divergence which can be
removed by a renormalization of the parameters bD;F;
 . The logarithmic divergence
produces running of these couplings, which is possible due to treating � as a small
parameter. After renormalization, what remains is described by F.m�;�;�/, which
is a non-analytic function of m� and � that is given by

F.m; ı; �/ D .m2 � ı2/
"p

ı2 �m2 log

 
ı �pı2 �m2 C i�
ı Cpı2 �m2 C i� C ı log

�2

m2

!#

C1
2
ım2 log

�2

m2
C ı3 log

�2

4ı2
: (4.81)

For ı > �m, the function F.m; ı; �/ is real valued.
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Table 4.1 Estimated
one-loop correction to the
baryon Gell-Mann–Okubo
relation

Source D F C MGMO=MB

�PT [210] 0.61 0.40 1.2 0.79 %

Lattice QCD [211] 0.72 0.45 1.6 1.12 %

SU(6) Quark Model 3=4 1=2 3=2 1.29 %

Combining results for the two sunsets, and forming the linear combination of
octet baryon masses in Eq. (4.77), we have the one-loop result

MGMO D 4

3.4�f /2

�
�.D2 � 3F 2/�GMO.m

3
�/�

1

6
C 2�GMOŒF.m�;�;�/�

�
;

(4.82)

where �GMO.x�/ D 4
3
xK � x� � 1

3
x� for any octet-baryon quantity x, and

consequently the � dependence is only superficial. The one-loop correction is
determined using various estimates of the axial couplings, see Table 4.1, and is
in line with the experimental value for MGMO. This agreement is actually quite
surprising if we analyze the expansion of individual octet baryon masses. The one-
loop corrections are particularly large: for the nucleon, ıMN .� D ��/=MN D
�39%; for the Lambda hyperon, ıM�.� D ��/=M� D �67%; for the Sigmas,
ıM˙.� D ��/=M˙ D �89%; and finally for the cascade baryons, ıM�.� D
��/=M� D �98%. The expansion is worse with increasing strangeness because of
larger couplings to strange mesons. The expansion parameters governing the heavy-
octet-baryon expansion are not considerably less than unity, mK=MB and m�=MB

are both � 0:5. The success of three-flavor HB�PT to describe certain observables
seems to require a deeper explanation.

19 Recall the relation between the nucleon sigma term and strangeness,
Eq. (4.59). Using the baryon chiral Lagrangian at tree level, calculate the
matrix element on the right-hand side and express it in terms of the octet
baryon masses. Finally, obtain a rough estimate the size of the sigma term.

4.5.3 Excluding Strangeness

In the three-flavor chiral expansion, we treat the quark masses equally mq �
ms 
 �QCD. Unless one is exceptionally lucky, the strange-quark mass is
probably too large to be considered a perturbation about the chiral limit. With
notable exceptions, baryon observables exhibit poor convergence, and even meson
properties determined with lattice QCD extrapolate better without the constraints of
SU.3/ �PT [212].
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One approach to the problematic strange quark is to integrate it out in order to
use a two-flavor chiral expansion. This corresponds to the mass hierarchy mq 

ms � �QCD. For the nucleon and pion, integrating out the strange quark results in
SU.2/ �PT developed above. For the nucleon, we treated it as an external source
of isospin, and nothing stops us from having external sources with nonvanishing
strangeness quantum number. As a result, one can consider SU.2/ �PT for strange
hadrons [213–215]. This description has limited predictive power, but is ideally
suited for lattice applications.

To exhibit the idea behind two-flavor chiral expansions for strange hadrons,
consider the kaon mass. At tree level in SU.3/, one has the expression

m2
K D

4�

f 2

�
mq Cms

� D 1

2
m2
� CM2

K DM2
K

�
1C m2

�

2M2
K

C � � �
�
; (4.83)

where we have separated out dependence on the strange quark mass by defining the
two-flavor chiral-limit value of the kaon mass, MK D mK

ˇ̌
mqD0. From the physical

kaon mass, mK0 D 0:497 GeV, we can estimate MK using SU.3/ �PT at one-loop
order. Not surprisingly, the overwhelming majority of the kaon mass arises from
the strange quark, MK D 0:486.5/ GeV, where the uncertainty corresponds to that
from the fourth-order low-energy constants.

Now we extend the idea to hyperons. Consider for simplicity kaon contributions
to the mass of the ˙ baryon. These contributions schematically take the form

M˙ D MB C am2
K C b m3

K C � � � (4.84)

D MB C a0M2
K C a00m2

� C b0M3
K C b00MKm

2
� C b000 1

MK

m4
� C � � � ;

where, in the second line, we have expanded out the contributions from the strange-
quark mass. This expression can then be reorganized into an SU.2/ chiral-limit
expansion,

M˙ DM.2/
˙ C Am2

� C B m3
� C C m4

� .logm� CD/C � � � ; (4.85)

where M.2/
˙ denotes the ˙ baryon mass in the two-flavor chiral limit. In the

SU.2/ expansion, the all-orders strange-quark mass dependence is contained in the
parameters,M.2/

˙ , A, B , . . .
The price to pay for a better converging expansion is a mild proliferation of

low-energy constants. Table 4.2 summarizes the various parameters entering the
two-flavor expansion of baryon properties. Computing the one-loop contributions
to baryon masses in two-flavor �PT and evaluating these at a scale of � D ��

shows perturbatively small corrections over a range of pion masses, see Fig. 4.13.
The dimensionless parameters underlying the two-flavor chiral expansion are
m2
�=�

2
� and m2

�=M
2
K , and m�=M

.2/ from the heavy-baryon expansion. Baryons
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Table 4.2 Comparison of SU.3/ and SU.2/ �PT for baryons. Listed for each theory are the
quantities required to be small for the perturbative expansion, the baryon multiplets entering the
theory, and their associated axial couplings

SU.3/ SU.2/SD0 SU.2/SD1 SU.2/SD2 SU.2/SD3

Expansion p p p p p

Parameters m� , mK , m� m� m� m� m�

� ��N �˙�, �˙�˙ ����

Baryon 8B 2N 1�, 3˙ 2�

Multiplets 10 T 4� 3˙� 2�� 1˝

Axial D, F gA g�˙ , g˙˙ g��

Couplings C g�N g�˙� , g˙˙� g���

H g�� g˙�˙� g����

Fig. 4.13 One-loop corrections to baryon masses as functions of pion mass in SU.2/ HB�PT. The
bands are generated by varying the renormalization scale � within ˙25% of ��

with increasing strangeness perform correspondingly better in SU.2/ �PT for
two reasons. The first reason is that the axial couplings decrease with increasing
strangeness. Secondly the heavy baryon approximation depends on the SU.2/
chiral-limit masses, and these increase with increasing strangeness. As a result, the
approximation works better the stranger the hyperon. Lattice QCD will ultimately
reveal whether this is a successful description of hyperons, and whether SU.3/
relations among couplings emerge.
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20 Use SU.2/ �PT to construct a low-energy theory of kaons. Do the same
for the �.

21 Find a process involving strange baryons for which a description in terms
of SU.2/ �PT must certainly fail.

4.5.4 Not-So-Heavy Baryons

Treating baryons as heavy is required to have a power counting scheme, however,
the static approximation is often severe. Recoil corrections can be treated in
perturbation theory, but this approach will not allow one to exactly capture the
correct analytic structure of amplitudes. Most unnerving, furthermore, is that the
heavy-baryon approximation can lead to unphysical singularities. In such cases,
one needs all-orders re-summation of recoil corrections, and this can be achieved
through relativistic-baryon �PT [216].

We will use the nucleon’s scalar form factor as an illustrative example. Using
relativistic nucleon spinors, this form factor is defined from the matrix element

hN.p0/jmq

�
uuC dd

�
jN.p/i D u.p0/
.t/u.p/ (4.86)

and differs by a trivial normalization factor from the scalar form factor we used
in Sect. 4.4, namely 
N .t/ D 1

2MN

.t/. Computing this matrix element at the

Cheng-Dashen point (t D 2m2
�) with HN�PT, we obtain the result 
.t D 2m2

�/ �

.t D 0/ D 3�g2Am

3
�

2�2�
with corrections at O.m4

�/. This result does not indicate

anything problematic about the heavy-nucleon approach.
For a general t-channel momentum transfer, the analytic properties of the

amplitude allow for a once-subtracted dispersion relation,


.t/ � 
.0/ D t

�

Z 1

4m2�

dt0
IŒ
.t 0/�
t 0.t 0 � t/ ; (4.87)

where the integration proceeds along the two-pion cut. The fully relativistic
computation at one loop can be obtained using the imaginary part of the form-factor
diagrams with relativistic kinematics and the dispersion integral above. The result
has the form
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.t/ � 
.0/ D 3�g2Am�

4�2
�

(4.88)

"
.t � 2m2

�/

�
1

2
p
�

log
1Cp�
1 �p� � log

�
1C m�

2MN

p
1 � �

��

C2m2
�

�
1 � log

�
1C m�

2MN

��#
:

Above, � is the threshold parameter defined by � D t
4m2�

.
One can perform the same computation using HN�PT. This result agrees with

the heavy-nucleon limit, m�=MN 
 1, of the fully relativistic expression, which is
given by


.t/ � 
.0/ D 3�g2Am�

4�2
�

"
.t � 2m2

�/

�
1

2
p
�

log
1Cp�
1�p�

�
C 2m2

�

#
; (4.89)

where the second term survives at the Cheng-Dashen point. The problem with the
above expression, however, is that it becomes singular at the two-pion threshold.

This unphysical behavior is due to the factor 1
2

log 1Cp
�

1�p
�
! � 1

2
log .1 � �/, as

� ! 1. Physically, we expect a branch cut to start at threshold, whereas HN�PT
produces an unphysical singularity right at threshold.

The fully relativistic expression has the correct analytic structure. As one
approaches threshold, the unphysical singularity is exactly canceled by the addi-

tional logarithm in Eq. (4.88), namely � log
�
1C m

2MN

p
1��

�
! C 1

2
log .1 � �/.

This logarithm, moreover, is responsible for the branch cut above threshold. The
complications with the heavy-nucleon approach can be linked to the emergence of
a large parameter as one nears threshold. This parameter is m�

MN

p
1�� , which is small

in the heavy-nucleon approach, m�=MN 
 1, but the strict heavy-nucleon power
counting is spoiled as one nears threshold, � ! 1. Consequently re-summation
of m�=MN terms becomes necessary to produce the physically correct analytic
behavior of the form factor.

If one requires �PT amplitudes in the vicinity of multiparticle thresholds, one
must be careful to perform re-summations to produce the correct non-analyticities.
On the other hand, when one is far from such thresholds, their effect can be captured
in a tower of analytic terms. This is the principle underlying the construction of
every effective field theory.
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4.6 Final Remarks

To conclude, we will summarize the results detailed in this chapter in just a few
sentences. �PT provides the tool to systematically account for the light-quark–mass
dependence of low-energy QCD observables. This effective field theory is written in
terms of the approximate Nambu-Goldstone modes that emerge from spontaneous
breaking of chiral symmetry. Their interactions, and interactions with low-lying
baryons are constrained by the symmetries and symmetry-breaking pattern of
QCD. The perturbative expansion of �PT is limited in practice by the size of
the physical quark masses relative to strong interaction scales. The nonrelativistic-
baryon approximation, and, in particular, the size of the strange-quark mass put
strain on the expansion.

Prior to lattice-QCD computations, �PT was the only way to do precision low-
energy QCD phenomenology. The era of high-precision lattice QCD has altered the
situation. Lattice gauge theory and chiral dynamics have been used in conjunction
as an essential way to extract physics from QCD. In the next era, we see lattice
computations testing the rigor of the chiral expansion directly, with the power
of resolving long-standing puzzles. As our understanding progresses beyond the
single-nucleon sector, we additionally may hope to expose the chiral dynamics of
light nuclei from first principles.

Acknowledgements Work supported by a joint City College of New York – RIKEN/Brookhaven
Research Center fellowship, an award of the Professional Staff Congress of the City University of
New York, the Alfred P. Sloan foundation through a City University of New York Junior Faculty
Research Award in Science and Engineering, and by the U.S. National Science Foundation, under
grant number PHY12-05778.



Chapter 5
Nuclear Physics from Lattice QCD

William Detmold

Abstract I present a pedagogical overview of the application of lattice QCD to the
physics of multi-hadron systems. This is a relatively new area of research in which
progress has been significant in the last few years and the aim of these lectures is to
provide a perspective on the current and future scope of this emerging frontier. After
reviewing the recent developments that are beginning to enable nuclear physics to
be studied from the underlying theory of the Standard Model, I discuss the recent
results that have been obtained in the study of two-hadron and multi-hadron systems.
I also explore the difficulties particular to lattice QCD calculations of such systems
and emphasise the issues that remain to be resolved.

5.1 Introduction

At a fundamental level, nuclei and other systems of relevance to nuclear physics
arise from the Standard Model of particle physics that describes how matter interacts
through Quantum Chromodynamics (QCD) and the electromagnetic and weak
(electroweak) forces. At the relatively low energies that are relevant for much
of nuclear physics, only a few parameters of the Standard Model are relevant,
namely the light quark and electron masses, the QCD scale, �QCD, and the
coupling to electromagnetism, ˛f:s . From these five inputs, the whole complexity of
nuclear physics emerges, with all its remarkable fine-tunings and intricate structure.
However, calculations involving the strong interaction are enormously challenging,
and demonstrating this emergence by computing the properties and interactions
of an arbitrary nucleus from the Standard Model is beyond our current abilities.
While enormous advances have been made over the years in developing both
phenomenological descriptions of nuclei [217–221] and effective field theory-based
descriptions of low energy nuclear physics constrained by the symmetries of the
Standard Model [222–224], these approaches must be tuned to experimental data,
and their predictive power in realms where there is no such data is limited.
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To date, the only tool with which to perform QCD calculations in a systematically
improvable way is lattice QCD (LQCD). In this approach, space-time is discretised
and QCD is numerically solved on a space-time lattice; for realistic calculations, this
requires highly optimised algorithms and cutting-edge supercomputing resources.
LQCD calculations have led to important insights in particle physics and are critical
ingredients in the determination of many of the parameters of the Standard Model.
In recent years, the application of LQCD to the intrinsically more complex realm
of nuclear physics has begun in earnest. This is a challenging task as nuclei
are complicated systems with many relevant energy scales, ranging from nuclear
excitations that can be just a few tens of keV through nuclear bindings of a
few MeV per nucleon, to hadronic energies and excitations at the typical QCD
scale, �QCD � 300 MeV, all the way to the total energy of the system (a few
hundred GeV). Nevertheless, this is an important endeavour as it will allow ab
initio predictions and ultimately place nuclear physics on the firm foundation of
the Standard Model.

Progress over the last few years has been significant, and the primary goal of
these lecture notes is to highlight this in the context of light nuclei and other
multi-hadron systems. The main body of these lectures presents a discussion of our
theoretical understanding of multi-hadron systems and overviews recent numerical
studies, starting with two-body systems and then moving on to nuclei and multi-
meson systems. After summarising the current state of the field, I discuss current
issues and future challenges that must be faced in order to provide a truly ab initio
approach to nuclear physics.

5.2 Approaching Nuclear Physics in Lattice QCD

Of the various components of the Standard Model, the most challenging piece to
deal with in the low energy regime is the strong interaction, described by QCD. The
difficulties arise because of the non-perturbative nature of strong interactions at long
distances, r > 0:1 fm, that means that the perturbative techniques that work well
for many calculations in the electroweak sector and in QCD at high energies are
inapplicable. For the majority of our discussion, we shall consequently ignore the
electroweak interactions and focus on QCD which is defined in Euclidean space-
time by the partition function

Z D
Z

DA�DqDqe�SQCDŒA;q;q� (5.1)

D
Z

DA� detŒM�e�SgŒA� ;

where A� and q are the gluon and quark fields respectively and, defining D� D
@� � igA� and F�� D ŒD�;D��,
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SQCDŒA; q; q� D
Z
d4x

�
�1
2

trF��F�� C q.D=Cm/q
�
; (5.2)

is the QCD action. In the second line of Eq. (5.1), we have integrated over the quark
degrees of freedom where SgŒA� is the purely gluonic part of the action and MŒA�

is the Dirac operator, which depends on the gauge field. A pedagogical introduction
to lattice QCD is provided in the literature [6, 80, 82] and in other contributions in
this volume and we refer the reader to this for many details; here we briefly present
elements that will be germane to our discussion. The main focus of these lectures
will turn out to be on spectroscopy; this is enabled by measurement of two-point
correlation functions defined for some set of quantum numbers fQg by

CfQg.t/ D 1

Z

Z
DA�DqDq QOQ.t/O

Q.0/e
�SQCDŒA;q;q�

D 1

Z

Z
DA�F

h QOQ.t/;O
Q.0/

i
detŒM�e�Sg ŒA� ; (5.3)

where the composite operators O
Q and QOQ create and annihilate states with the

quantum numbers Q and are separated in Euclidean time. The functional F is the
result of performing the fermion integrations of the interpolating operators and
is generally defined in terms of the quark propagator (the inverse of the Dirac
operator). For brevity, we have suppressed the spatial structure of these operators
which may be used to project to a fixed momentum for example. The Euclidean
time behaviour of such correlation functions is determined by the energies of the
QCD eigenstates with the requisite quantum numbers and by the specific forms of
the interpolating operators. By determining CfQg.t/ numerically, we can attempt to
extract information about a subset of the eigen-energies.

To render the calculation finite, we discretise space-time and impose boundary
conditions that we take to be periodic in spatial directions and periodic (anti-
periodic) in time for bosons (fermions). The gluon degrees of freedom are imple-
mented through SU(3)-valued link variables U�.x/ D expŒi A�.x/�; for details of
the various discretised forms of the QCD action we refer the reader to the literature
[6,80,82]. In order to perform the requisite functional integrals over the gluon fields,
we use importance sampling, recognising that the factor P ŒU � D detMŒU �E�SgŒU �

can be interpreted as a Boltzmann weight as we use the Euclidean metric. By
generating an ensemble of configurations of the gluon link variables according
to this probability measure, we are able to estimate the correlation function CfQg
reliably. For an ensemble of N configurations, fU Œ1�

� ; U
Œ2�
� ; : : : ; U

ŒN �
� g,

CfQg.t/ D 1

N

NX
cD1

F
h QOQ.t/O

Q.0/
i h
U Œc�
�

i
CO

�
N�1=2� ; (5.4)

with uncertainties that decrease as the size of the ensemble increases.
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To generate such ensembles requires algorithms that efficiently and effectively
explore the space of possible gluon configurations and, because of the four-
dimensional nature of space-time and the non-locality of P ŒU �, this is a challenging
problem, requiring supercomputing resources. The necessary machinery has been
developed over the last few decades, culminating, for example, in the last few years
in increasingly precise LQCD determinations of many quantities of importance to
particle physics and of the baryon number B D 0; 1 ground state hadron spectrum
with fully controlled statistical and systematic uncertainties [92] (these results have
been nicely reviewed recently in [225, 226]). This is an important achievement as,
when compared to experimental measurements, it demonstrates that QCD describes
the strongly interacting regime of the strong interaction and that lattice QCD
provides a systematic and reliable tool for the computation of hadronic contributions
to Standard Model observables. It also demonstrates that the field of LQCD is at a
point where more computationally challenging problems, such as many of those
encompassed by nuclear physics, can begin to be tackled. A number of groups have
recently taken up the task of applying LQCD to the nuclear physics of few hadron
systems and significant progress has been made. A discussion of this progress and
the issues that still remain is the subject of these lectures.

5.3 Two-Hadron Systems

We begin by investigating systems that, in the infinite volume, non-relativistic sense,
correspond to two-hadron systems.

5.3.1 Scattering Information from Finite Volume Energy
Eigenvalues

In order to describe reality, we are fundamentally interested in physics in infi-
nite volume Minkowski space-time. However, by necessity, current importance-
sampling lattice QCD calculations are performed with a Euclidean metric and in
a finite space-time volume. The restriction to Euclidean space-time places funda-
mental constraints on the physics that can be extracted [120], or at least constrains
the way in which we can access particular physical observables. Similarly, the
imposition of boundary conditions to reduce the system to a finite volume modifies
the system in the infrared regime and must be accounted for. Nevertheless, for
many single hadron observables, the analytic structure of the relevant correlation
functions is such that Wick rotation does not present an obstruction. It is also the
case that for single hadron correlation functions in the low energy regime, chiral
perturbation theory (�PT) allows a model-independent extrapolation to infinite
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volume. However, for infinite volume extrapolations of higher energy observables,
such as form factors at momentum transfers, Q > 1 GeV, we must rely on more
empirical studies of the volume dependence.

Multi-hadron systems present a more complex problem, and one in which effec-
tive field theory plays an important role. Understanding systems with the quantum
numbers of multiple hadrons can be viewed as a matching of QCD correlations
onto equivalent correlation functions in an effective hadronic description and this
hadronic description is important in defining the observables that can be extracted.
Hadrons are emergent collective degrees of freedom that arise from QCD dynamics,
but they are the degrees of freedom that we are necessarily interested in because
they define the asymptotic states of the infinite volume theory. QCD correlations
that are amenable to an effective hadronic description are those in which it
makes sense to consider dominant contributions from a finite, preferably small,
number of hadronic degrees of freedom. Chiral perturbation theory provides such
a description at low energy, but the concept is more general. For example, an
effective hadronic description of the nucleon matrix element of the vector current at
multi-GeV momentum transfer exists, but a chiral expansion of the process is not
useful because of the large momentum that renders the power-counting useless. In
lattice calculations of the three point functions that probe such a matrix element,
the dominant contribution at large Euclidean times comes from transitions between
single nucleon states at rest and boosted to the given momentum transfer (up to
lattice artifacts that we ignore at present). Contributions from internal excitations
of the nucleon and from nucleon+pion multi-hadron states1 are suppressed in
the Euclidean correlation functions by the relevant energy gap and only become
important at early times.

For multi-hadron systems, an effective hadronic description allows us to
understand the connection between Euclidean space lattice calculations and the
Minkowski space hadronic quantities of the real world. Provided an effective
hadronic description exists, physical information can be extracted by understanding
the analytic structure of the hadronic theory. If the hadronic description is too
complex to determine cleanly through matching to Euclidean QCD correlations,
analytic continuation, or other methods of connecting to Minkowski space physics,
become ambiguous. An example is provided by correlators with the quantum
numbers of a minimum of two stable2 hadrons (for example, I D 2, J D 0,
even parity, corresponding most simply to two pion systems). In a finite volume,
and at energies far below the inelastic threshold, the long time behaviour of the
hadronic theory is dominated by two-body states of the lightest hadrons that can
produce the required quantum numbers. In the absence of bound states, the most
important contribution at large Euclidean times is from the two-hadrons at rest in the
corresponding centre-of-mass (CoM) frame, but sub-leading contamination arises

1This is very loose terminology as the ground state should not be thought of as a bare object to
which pions are added to get an excited state.
2At a minimum, stable under the strong interaction.
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from two hadron state moving back-to-back in the CoM frame and from internal
excitations of the hadrons. By careful analysis of multiple different correlators with
the given quantum numbers, it is possible to extract information about these states.
Crucially, the hadronic description allows us to understand the analytic structure
of the two-hadron correlators in this regime and determinations of the energies of
these states translate to extractions of the scattering phase shift through the Lüscher
formalism [117, 125, 227] (see also [228]) to be discussed below. At earlier times,
or with more complicated sets of correlation functions, contributions from higher
energy states of the given quantum numbers begin to be resolved and eventually
more complex N > 2 hadron states make significant contributions, resulting
in different analytic structure in the correlation function. If we can construct an
effective hadronic description in this regime and determine enough information
(at high enough precision) about the various contributions by matching to the
finite-volume, Euclidean QCD correlators, we can in principle determine infinite
volume Minkowski space information in the inelastic regime. If such an hadronic
description is ambiguous, then model dependence necessarily arises. It should
be noted that the effectiveness of a hadronic description is volume dependent; as
the volume increases, the number of finite volume states in a given energy range
increases making a hadronic description more cumbersome. If one is interested
in information about states other than the ground state, this becomes increasingly
difficult to reliably extract—an important part of the obstruction discussed by
Maiani and Testa [120].

For two-particle interactions, the constraints that the Euclidean formulation
imposes have been famously circumvented by the work of Lüscher [117, 125, 227]
which showed that the finite volume two-hadron energy spectrum below the inelastic
threshold depends in a calculable way on the phase-shift in the appropriate scattering
channel. The allowed energies are quantised, with the quantisation condition
depending explicitly on the two-particle phase shift. As a corollary, calculations
of these energies can be used to extract the phase-shift up to the inelastic thresholds.
This result has been known for many years in the context of quantum mechanical
systems [229–231] but Lüscher demonstrated that this remains true in the context of
relativistic quantum field theory up to corrections that are exponentially suppressed
in the large volume limit. We shall first discuss this classic result before turning to
more recent generalisations in subsequent subsections.

In general, systems confined in any kind of finite volume have momentum modes
that are restricted or quantised in some way. For free particles in one-dimension, of
size L with periodic boundary conditions, the allowed modes are plane-waves of
momentum kn D 2�n

L
for integer n. In the presence of finite range interactions

these are modified. Using translational invariance, we can consider the two particle
system as one particle moving in a potential generated by the other particle, and
since the interaction is of finite range, the potential is non-zero only in some finite
region which we assume to be in the interior of the finite volume. The quantisation
condition is then modified in a way that is encapsulated in the phase shift induced
by the potential as we require that the wavefunction in the interior of the potential
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Fig. 5.1 One-dimensional
scattering wavefunction
amplitude. The shading
shows the interaction region
in which the wavefunction is
modified

must match on to the plane-wave wavefunction in the region outside the interaction,
as well as being periodic. That is, the quantisation condition becomes

kn LC 2 ı.kn/ D 2 � n : (5.5)

with an example wavefunction shown in Fig. 5.1 for a simple square-well potential.
Proceeding to a three-dimensional cubic spatial volume of periodicity L in each

direction, the allowed modes are again quantised, but the quantisation condition is
more complicated. This is most easily derived in the context of effective field theory
as first expounded in [232],3 and that is the approach we take here. Consider a non-
relativistic,4 spin-less species of particles, �, whose dynamics are described by the
Lagrangian

L D L0 C C0.�/.��/2 C C2.�/.�r�/2 C : : : (5.6)

where L0 is the free Lagrangian and the couplings, C2n, depend on the renormali-
sation scale �. For this simple example, we will assume that the allowed couplings
are only s-wave in nature. The scattering amplitude is given by the geometric series
shown in Fig. 5.2 which can be resummed as
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"X
n

C2n.�/p
2n

#
Io
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C : : :

D
P

n C2n.�/p
2n
�

1 � I0
P

n C2n.�/p
2n
� ; (5.7)

3See also the original derivation [125, 227] or [123] for a particularly clear alternate derivation.
4Working with relativistic particles does not modify the resulting expressions. In the non-
relativistic context, the relativistic corrections can be accounted for by changes in higher-derivative
operators.
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Fig. 5.2 Contributions to the two particle scattering amplitude. The blobs represents the insertion
of the interactions

where the infinite volume loop integral is given by

I0.�/ D
��
2

�4�d Z dd�1q
.2�/d�1

1

E � jqj2=M C i �
PDS�! �M

4�
.�C i p/CO.d � 4/ ; (5.8)

E is the centre-of-mass energy of the system and M is the mass of the particles.
In the second line of Eq. (5.8), we have chosen the PDS subtraction scheme [233]
to define the integral and couplings and set p D pM E . The renormalisation
scale dependence of the loop integrals is exactly cancelled by that of the couplings
C2n.�/. In terms of the scattering phase shift, ı.p/, the infinite volume scattering
amplitude is given by

A � 4�

M

1

p cot ı.p/� ip : (5.9)

Equating this with Eq. (5.7), one can read off that � C 4�
M

P
C2n.�/p

2n
��1 D

p cot ı.p/. For future discussion, it is useful to define the effective range expansion
of the phase shift

p cot ı.p/ D �1
a
C r

2
p2 C

1X
iD2

qi .p
2/i ; (5.10)

in terms of the scattering length, a, the effective range, r and the shape parameters,
qi (this form is analytic around p D 0). The expansion is valid for momenta
below any possible cuts and thresholds and there is a straightforward relationship
between the parameters in the effective range expansion and the couplings, C2n, in
the Lagrangian.

In a finite volume, the eigen-energies of the system are signalled by poles in
the two-particle scattering amplitude. Since the allowed momentum modes are
restricted in finite volume, the denominator of Eq. (5.9) is modified and we seek
zeros of

1P
C2n.�/p2n

� Re I PDS
0 .LI�/� D 0 (5.11)
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using the same subtraction scheme. Here, IPDS0 .L;�/ is the finite volume form of
the regulated integral in Eq. (5.8) that is defined with the intermediate help of a
cutoff regulator as

I PDS
0 .LI�/ D 1

L3

�X
k

1

E � jkj2=M �
Z � d3k
.2�/3

M

jkj2 C
Z PDSd3k

.2�/3
M

jkj2 (5.12)

D 1

L3

�X
k

1

E � jkj2=M � 4�� �
M �

4�
; (5.13)

which we note is independent of �. Combining Eqs. (5.9), (5.11), and (5.13), and
writing the sum over allowed momentum modes in terms of the integer triplets n D
L
2�

k, this reduces to

p cot ı.p/ D 1

�L

2
64
�nX
n

1

jnj2 �
�
pL

2�

�2 � 4��n

3
75 � 1

� L
S

�
pL

2�

�
; (5.14)

where the integer cutoff �n D L�
2�

. This is the quantisation condition that
allowed values of the momentum p D jpj must satisfy. There are two ways
in which it can be used. Firstly, if the phase shift is known as a function of
momentum, the allowed scattering momenta, pi , can be predicted, and assuming
the validity of the relativistic dispersion relation, thereby the energy spectrum,

Ei D 2

q
m2 C p2i . Secondly, if one determines some number of the energies of

states in the spectrum, Ei from numerical calculations, they determine scattering

momenta pi D
q
E2
i =4 �m2 for which Eq. (5.14) is satisfied and thereby allow the

extraction of the scattering phase shift at those momenta.
A number of comments are in order at this point.

• The quantisation condition above was first derived [125, 227] using analytic
continuation to regulate the divergent sum contained in the function S.�/

whereby it is represented by the three-dimensional Epstein �-function,

Z00.s; �/ D 1p
4�

X
n

1

.jnj2 � �/s ; (5.15)

defined via analytic continuation for s � 3=2. The original form of the
quantisation condition is
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2
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and, as the choice of regularisation does not affect physical quantities, the two
quantisation conditions are equivalent. The quantisation condition is valid for
volumes large compared to the effective range of the interaction, L 	 r . In
the effective field theory approach, this stems from requiring locality of the
interactions. In the original derivation, the requirement arises from there being
a region inside the lattice volume where the two-particle wavefunction takes its
asymptotic, non-interacting form.

• The simple form above assumes a single L D 0 scattering channel that subduces
to the AC

1 cubic irrep and neglects the effects of mixing of L D 4; 6; : : : partial
waves into the AC

1 cubic irrep. The equation is also valid only for systems
whose centre-of-mass is at rest relative to the spatial boundary conditions. These
limitations can be overcome as will be discussed below.

• The relation of the eigen-energies to the scattering momenta above assumes the
continuum dispersion relation for the hadronic components. This is modified
in an unknown way by the lattice discretisation and necessarily introduces
uncertainty into the extracted phase shift. Nevertheless, in many calculations,
the single hadron dispersion relations have been investigated numerically (see
for example [234]) and, within statistical uncertainties, are well represented by
the continuum dispersion relation at the relevant low momenta, so it is likely that
such effects are not large.

• For weakly interacting systems, where a; r 
 L, it is possible to perform an
expansion of the quantisation condition, Eq. (5.14), around the non-interacting
momentum poles, p2 D 4�2

L2
jnj2 [125,227]. This leads to a set of relations such as

�E0 D 4�a

ML3

�
1 � c1 a

L
C c2 a

2

L2
C : : :

�
; (5.17)

for the ground state energy shift, where c1 D �2:837297 and c2 D 6:375183.
Similar relations for excited state energy levels can be constructed.

• The above analysis explicitly encompasses only those effects in which particles
are on shell inside the loop integral/sum. Additional quantum contributions from
virtual particles (where the sum of the energies of all the particles is larger
than the energy of the scattering particles) also occur and give rise to additional
volume dependence that is exponentially small. For a virtual particle of mass m,
the corrections are O.e�mL/, and in most cases the pion is the lightest relevant
particle and dominates these sub-leading effects. For�� and NN scattering, these
effects have been investigated to one loop order in [235, 236].

• For similar reasons, the analysis above is limited to scattering momenta below
the appropriate inelastic threshold where additional intermediate states can go
on-shell and information beyond the elastic scattering phase shift is needed.
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5.3.2 Boosted Systems, Asymmetric Systems, and Systems
with Unequal Masses

There have been a number significant generalisations of the Lüscher formalism
since its inception, primarily concerning scattering states in less symmetrical cases.
There are multiple ways in which the scattering of two hadrons can be less
symmetric: the system can have momentum relative to the boundary conditions,
the boundary conditions can be asymmetric, one can be interested in higher
partial waves/irreducible representations of the cubic group other than the AC

1

representation, or the two hadrons can be unequal in some regard such as their mass.
All of these situations have been addressed at some level and below I only briefly
summarise the current understanding.

Eigenstates of the lattice calculation are classified by the irreducible representa-
tions of the appropriate symmetry group (for a cubic spatial volume and a spatially
isotropic discretisation, this is the octahedral group and its double covering for
spinorial representations) and are more constrained than in the continuum, infinite
volume limit. Two-particle eigen-energies hence determine a combination of the
infinite volume partial wave phase shifts. The symmetries are further reduced
when the eigenstates that are studied are boosted relative to the lattice boundary
conditions, or when a rectangular rather than cubic spatial volume is considered
(see [237, 238] in the latter case). For moving systems, Rummukainen and Gottlieb
[122] provided the first analysis and this has been generalised in recent years
[123, 124, 130, 239–243]. By performing different boosts of the system, many more
energy eigenstates can be accessed in a single lattice calculation, resulting in a more
detailed extraction of phases shifts. Boosted systems of unequal mass have been
treated in [244, 245] and boosted bound states have been investigated in [246, 247].
Scattering in the case of multiple two-particle channels has been considered in a
number of contexts in [130,241,242,248–251] and a detailed investigation of higher
partial waves has been recently presented in [252]. A number of other interesting
developments in this context have also been reported recently [253–264].

A further way in which phase shifts can be accessed at a larger range of energies
is by the use of twisted boundary conditions in which quarks pick up an additional
phase at one of more of the boundaries [265]. Considering for simplicity a twist in
the quark boundary conditions in the z direction alone, quarks satisfy

q.xC Oz L/ D ei�q.x/ ; (5.18)

and in this case, the free two particle energy levels are shifted to 2�
L
.nx; ny; nz C

N
3

�

2�
/, where N is the baryon number of the scattered particles.5 Equation (5.18)

5With flavour independent boundary conditions, quarks and anti-quarks receive equal and opposite
twists so mesonic systems are unaffected. One can introduce flavour-twisted boundary conditions
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is equivalent to the imposition of a constant vector potential. Correspondingly, the
Lüscher quantisation condition, Eq. (5.14), is modified by the replacement

S

�
pL

2�

�
�! S

�
pL

2�
; �

�
D

�nX
n

1

j Qnj2 �
�
pL

2�

�2 � 4��n (5.19)

where Qn D .nx; ny; nz C N
3

�

2�
/. In order for the theory to be QCD, the modified

boundary conditions must be applied for both the sea quarks used in the lattice
generation and the valence quarks used for measurements. This is an expensive task
and it is interesting to consider the case of partially twisted boundary conditions in
which only the valence quarks see the twisted boundary conditions. This theory is
a partially-quenched cousin of QCD; it has been shown that for simple cases such
as NN or I D 2 �� scattering physical information can be obtained, but care must
be taken in cases where the unitarity violations that partial twisting induces become
evident such as for I D 0 �� scattering or�I D 1=2 K ! �� decays [271,272].

5.3.3 Resonances

Most hadrons that are listed in the Review of Particle Properties [72] are in fact not
asymptotic states, but occur as resonances in scattering channels of asymptotically
stable states.6 When they are sharply localised in energy, such resonances can be
effectively characterised by a mass and a width, or correspondingly a pole position
in the complex energy plane (although the full phase shift in the channel contains
more information than this simplest parameterisation).

It is of significant interest to investigate what lattice QCD can determine about
resonances such as the �-meson or the � baryon. As in experiment, in lattice
QCD resonances manifest as rapid motion of the phase shift in the corresponding
scattering channel which in turn gives rise to particular patterns in the energy levels
that the system exhibits as a function of the center-of-mass momentum or the lattice
volume. This was first investigated in [121, 273, 274] and has been the subject of
much attention in recent years because of the phenomenological importance in
the context of ongoing and planned experimental spectroscopy efforts in the light
and charm sectors [275–277]. The central observation is that the presence of the

[266–270] to modify flavour non-singlet mesonic quantisation conditions, but this introduces
difficulties in importance sampling and can only be easily implemented for valence quarks.
6Only states that are the lightest state with a given set of quantum numbers are asymptotically
stable: for hadrons composed of light and strange quarks, only the pion, kaon, proton and �, �
and ˝ baryons are stable under the strong interaction. Interestingly, at unphysically heavy quark
masses and finite volume, a number of other states such as the � and � become stable because the
pion mass increases more rapidly than that of other hadrons as the quark masses increase.
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Fig. 5.3 Phase shift and energy spectrum (lowest ten energy levels shown) of the simple model
of Eq. (5.20). The solid, dashed and dotted horizontal lines correspond to the elastic threshold at
2m� , to m�, and to the inelastic threshold at 4m� , respectively. The dotted curves show the free
particle energy levels

resonance does not manifest in a single energy level, but through the behaviour of
multiple energy levels as a function of the lattice volume. This is best illustrated by
an example; following [278], we choose a phase shift

ı.p/ D ��R p

16�W
C g2R
32�Wp

log

"
1C 4p2

m2
�

#
(5.20)

� arctan

"
g2Rp

16�W

1

W 2 �m2
�

#
;

where m� D 0:31, m� D 0:82, gR D 1:5, �R D 48 and W � 2
q
p2 Cm2

� . This

phase shift approximately describes �� scattering in a 3C 1 dimensional model of
two coupled Ising spins, � and � with an interaction term �2� and exhibits a narrow
resonance. Figure 5.3 shows the phase shift and the corresponding spectrum in the
centre-of-mass frame, with the presence of the additional level associated with the
resonance being clear.

In order to determine the resonance position with accuracy, it is important to
map out multiple measurements of the phase shift in the resonant energy region.
This can be done by making use of extractions of multiple excited state energies
from multiple different correlation functions, the use of multiple different volumes,
and by determining energies in systems that are boosted relative to the boundary
conditions [122]. A recent review of different techniques to analyse these systems
is given in [279] and a recent numerical example is discussed below.
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5.3.4 Bound Systems

For two-hadron bound states, of energy E2 < 2M , the Lüscher quantisation
condition also applies and can be used to ascertain the expected dependence of the
bound state energy on the lattice volume. To see this, we note that the S.�/ function
occurring in the quantisation condition has a useful alternative representation for
imaginary values of it argument (an imaginary scattering momentum correspond to
a two-hadron energy that is less than the sum of the individual hadron masses) that is

S.i�/ �
�jX
n

1

jnj2 C �2 � 4��j

D �2 �2 �C �
X
m¤0

1

jmje
�2�jmj� : (5.21)

To derive this Chowla-Selberg form, the Poisson resummation formula has been
used, see [280] for further discussion and extension. From Eq. (5.9), it is clear
that a bound state at infinite volume is signalled by a zero of the denominator at
i cot ı.p/ D �1. Inserting Eq. (5.21) into the quantisation condition, Eq. (5.14), for
p D i 	 we see that it reduces to

i cot ı.p/jpDi	 D �1C
X
m¤0

1

jmj	Le
�jmj	L ; (5.22)

showing that the finite volume contamination of bound state energies is exponential
in form [232,281]. In the infinite volume limit, this reduces to the expected form and
the momentum 	 approaches the binding momentum of the system, � D pM BE
where BE D jE2 � 2M j is the binding energy. As discussed above, the Lüscher
analysis does not account for polarisation effects and there are additional finite
volume effects arising from virtual states (pions) propagating around the lattice
boundary, giving rise to contributions � e�m�L as for single hadron systems.7 For
shallow bound states, in which the binding energy and binding momentum become
very small, the volume effects / e��L dominate and make it difficult to study such
systems in realistic lattice volumes. A notorious example is set by the deuteron
which at the physical values of the quark masses has a binding energy of 2.2 MeV,
corresponding to a binding momentum �d � 40 MeV; in this case, modification
of the bound state wavefunction by the boundaries is exponentially worse than
the effects of pions propagating around the boundaries. An interesting attempt to
reduce these effects is presented in [247] where bound states are considered for

7In the strict definition of a hadron as a localised colourless asymptotic state, what we refer to as a
multi-hadron bound state is itself a hadron.
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different centre-of-mass momenta relative to the boundary conditions and combined
to provide an extraction of the infinite volume binding momentum with corrections
that are suppressed to � e�2�L.

5.3.5 Lattice Wavefunctions and Potentials

Following the discussion of Bethe-Salpeter (BS) wavefunctions in Lüscher’s origi-
nal works, a method to directly extract information on two-hadron wavefunctions
has been developed in [282–284]. The asymptotic form of a two-particle wave-
function is known outside the range of the interaction but is characterised by the
scattering phase shift in the respective channel. By determining the large distance
part of the wavefunction and fitting to the known form, scattering information can
be obtained. This was pioneered for the I D 2 �� system in [284] and enabled the
extraction of the phase shift.

The HALQCD collaboration has further pursued this approach and produced a
method of extracting inter-hadron potentials for two-hadron systems [285] that we
briefly overview and discuss (see [286] for a recent review). The method proceeds
by defining the BS wavefunction from QCD correlation functions

G.r; t � t0IJP / D
X

x

˝
0
ˇ̌
h.1/.x; t/h.2/.xC r; t/J .t0I fQg/

ˇ̌
0
˛
; (5.23)

where h.i/ are sink interpolators that annihilate hadrons at time t and J .t0I fQg/ is a
source interpolating function for the two hadron system with quantum numbers,
fQg, typically specifying the total momentum, angular momentum (or more
accurately, the irrep of the lattice symmetry group), parity, and flavour. In our
discussion, we suppress indices on the interpolating operators for simplicity (they
can be subsumed into the definition of the quantum numbers). The projection
to particular quantum numbers at the source is sufficient to define the quantum
numbers of states that contribute to the correlation function at all times. We note
that while the correlators are labelled by r, this is not a quantum number; for short
separations, jrj < 1=�QCD, the two hadrons overlap significantly and r is essentially
meaningless, while for large r	 1=�QCD, the separation can only be defined up to
a resolution scale of the size of a hadron. For calculations with an infinite temporal
extent, this correlator can be written as

G.r; t � t0I fQg/ D
1X
nD0

An  
.n/.rI fQg/ e�En.t�t0/ (5.24)
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where the sum is over all eigenstates, jni, with the corresponding quantum
numbers and

An � hnjJ .0I fQg/j0i; (5.25)

 .n/.rI fQg/ �
X

x

h0jh.1/a .x; 0/h.2/b .xC r; 0/jni :

Up to an irrelevant normalisation, the BS wavefunction .nD0/.r; fQg/ of the lowest
energy state with the requisite quantum numbers can be extracted from the long
time behaviour, t � t0 ! 1 where G behaves as a single exponential. This
wavefunction can be used to define a non-local, energy-independent potential, U ,
below the inelastic threshold of the system through the Schrödinger equation

.EnD0 �H0/ 
.nD0/.r; fQg/ D

Z
d3r0 U.r; r0/  .nD0/.r0; fQg/ : (5.26)

Here, H0 D �r 2=M (assuming henceforth that the two hadrons are the same
mass,M , for simplicity) andEnD0 � 2

pjkj2 CM2 defines the asymptotic relative
scattering momentum k between the two hadrons. The nonlocal potential can be
written in terms of local potentials as

U.r; r0/ D V.r;�ir/ı.3/.r � r0/ ; (5.27)

where

V.r;�ir/ D V0.r/CO.r2=M2/ ; (5.28)

where r D jrj. Depending on the quantum numbers of the system under consid-
eration, this expansion can also contain terms linear in the derivative operator; an
example is for J D 1 two nucleons systems, where the spin vector, S, of the system
can be used to construct a spin-orbit term, L � SVLS.r/ where L D �i r � r.
The above expansion is a velocity expansion and the corrections are relative to the
hadron mass, typically scaling as �QCD=M that sets the scale for excitations of the
single hadrons.8 With BS wavefunctions determined at many energies, Eq. (5.28)
can be used to extract a large subset of local potentials and hence may provide
a constrained approximation to the non-local potential, U , for energies where the
expansion is convergent. If a single BS wavefunction is determined, the local
potential V0 can be extracted but is energy-dependent because of the neglect of
the additional terms in Eq. (5.28). All numerical work so far has used the latter

8In the limit that the masses of both hadrons become infinite, only the first term in Eq. (5.28)
survives and an energy-independent local potential can be defined [287–292]. In this limit, r also
becomes a well-defined quantum number.
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approach (see however [293]). Making this approximation, Eq. (5.26) reduces to
(the superscript n D 0 is appended to V0 to indicate the energy dependence)

.EnD0 Cr2=M/ .nD0/.r; fQg/ D V .nD0/
0 .r/  .nD0/.r; fQg/ ; (5.29)

which can be inverted to extract

V
.nD0/
0 .r/ D 1

M

.r2 C jkj2/ .nD0/.r; fQg//
 .nD0/.r; fQg/ : (5.30)

The BS wavefunction, and hence the potential, can be extracted from numerical
lattice calculations of the correlator in Eq. (5.23). These objects are defined in finite
volume, but presuming the lattice volume is large compared to the range of the
potential (the same constraint that applies to the Lüscher method discussed above),
can be extrapolated to infinite volume. The infinite volume potential can then be
used in the Schrödinger equation to determine the physical quantity of interest,
the scattering phase shift at the energy of the two hadron system in the lattice
calculation.

A number of comments on this method and possible extensions are in order:

• As discussed above, in neglecting the non-locality of the potential in Eq. (5.28),
energy dependence is introduced into the extracted potential and, from an ab
initio point of view, the energy-dependent potential contains exactly the same
information as the phase shift evaluated at the lattice energy. With the assumption
of slowly varying behaviour of the phase shift, small extrapolations in energy
may be justified; however such assumptions are invalid when the system becomes
interesting because of resonance structures and threshold effects. Extrapolations
of phase shifts to p � 300MeV from two-body systems calculated essentially at
rest (such as those presented in [286, 294, 295]) should be viewed with caution.

• The extracted potentials depend on the sink-interpolating operators used in the
calculation [290, 296, 297] with significant modifications seen at short hadron
separations from different smearings of the quark fields [298], for example. This
is expected as potentials are not observable quantities. Indeed, the use of different
interpolating operators results in the construction of different potentials that
should be phase-shift equivalent at the given energy, but will produce different
phase shifts at other energies. In [297], Birse reemphasised the ambiguities
associated with potentials through the simple example of an attractive square
well potential with a repulsive delta function coupling to an excited state at short
distance.

• As the box size becomes large, the number of scattering states, which in the
absence of interactions have energies En D 2

p
M2 C 4�2jnj2=L2, below the

inelastic threshold increases. In an attempt to deal with this pile up of states,
[299] introduces a “time-independent” potential method. Returning to Eq. (5.26)
and performing a weighted sum including the different n contributions, it is
straightforward to see that the ratio
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R.r; t � t0I fQg/ D G.r; t � t0I fQg/
ŒC.t � t0/�2

D
P

n An 
n.rI fQg/e�En.t�t0/

Œ
P

m Zme
�em.t�t0/�2

; (5.31)

(where C.t/ is a zero-momentum-projected single hadron correlator and em are
the single particle eigen-energies, with e0 D M ) satisfies the slightly more
complicated Schrödinger-like equation

�
� @
@t
C 1

4M

@2

@t2
�H0

�
R.r; t � t0I fQg/ (5.32)

D
Z
d3r0 U.r; r0/ R.r0; t � t0I fQg/ ;

for the same U.r; r0/ provided i) that terms other than the ground state in the
denominator of Eq. (5.31) are negligible, and ii) that terms in the numerator
of Eq. (5.31) that are not purely elastic hadron-hadron scattering states are also
negligible. The breakup of terms contributing to the sum in the numerator is into
asymptotic elastic scattering states that are two non-interacting hadrons of the
type described by the BS wavefunction, and into other states such as three hadron
states (for example, jh1ijh2ij�i) or two hadron states of different individual
nature (such as jh1ijh�

2 i, where h�
2 is a internal excitation of hadron h2). Near

the chiral limit, the inelastic threshold where the other states become important
is set by the addition of a single pion to the system, but for heavier values of
the quark masses, internal excitations of single hadrons may give rise to a lower
threshold.9

In order for this method to apply, one has to be certain that the time dependence
of G arises purely from elastic scattering states. This is a challenging task as it
would require complicated multi-exponential fits that completely describe the
correlator in the relevant region by a sum of terms that have energies below
the inelastic threshold and rule out the presence of contamination from states
with energies above the inelastic threshold. Indeed one can consider interpolators
that strongly overlap onto inelastic excited states rather than scattering states,
for example, those that centre the two hadrons at the same location. Given this
ambiguity, and the intrinsically ill-conditioned nature of multiple exponential
fits (see [300]), an “inelastic-state free” extraction cannot be performed in
practice, and the use of the “time-independent” method therefore introduces an
uncontrolled systematic error in the extracted phase shifts, at least as currently
applied. In addition, the contamination from states other than the ground state,

9In a finite volume, it is not obvious that any state can be purely an elastic state, a concept that
requires asymptotic separations. Nevertheless, for large volumes, it is perhaps enough to invoke
the cluster decomposition property.
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which depends on the overlap of source and sink interpolators onto such states,
introduces dependence on the source interpolator.

• The HALQCD approach has also been extended to consider the extraction of
tensor and spin-orbit interactions and to the parity odd sector [301]. Extensions
beyond the inelastic threshold are presented in [302], but the same limitations
of energy dependence and source dependence and problems with the time-
dependent method continue to apply.

• Finally, in [303], the potential method has recently been directly compared to the
Lüscher method using the same lattice setup. The systematics of these approaches
are different and the comparison is interesting.

5.3.6 Numerical Investigations

The scattering problem has been numerically studied over the years following the
first lattice investigations of scattering in the Ising model [304], two-dimensional
models [305, 306], four-dimensional O(4) models [307, 308], and quenched QCD
[309] and finally in QCD [310]. In the last few years there has been a rapid growth of
interest in full QCD calculations of two-hadron systems, and I attempt to summarise
this recent work, discussing meson-meson scattering, meson-baryon scattering and
baryon-baryon scattering before moving on to discuss dibaryon bound states.

5.3.6.1 Meson-Meson Scattering

There have been a number of recent investigations of various meson-meson
scattering channels. For �� scattering, the I D 2 channel is numerically the
simplest to study and has received significant attention [311–316], and an important
recent achievement has been a first extraction of the d -wave phase shift [126]. The
I D 0 channel is technically more demanding as it involves quark-line disconnected
contractions but it is phenomenologically interesting and is also important in the
analysis of �I D 1=2 K ! �� decays and has also been studied recently
[313, 317, 318]. The I D 1 P -wave �� channel contains the �, the prototypical
resonance, and many groups have recently presented investigations [319–323]. A
particularly clean study on anisotropic lattices with multiple volumes, showing the
structure of the resonance has appeared recently [127]. The phase shift extracted in
this last work provides an exemplary demonstration of the finite volume analysis
required to understand resonant behaviour and is reproduced in Fig. 5.4. By using
multiple volumes and considering systems boosted in various ways with respect to
the lattice boundaries, the phase shift has been mapped out over the entire elastic
scattering region and clearly demonstrates the resonant nature of the system (the
resonance is particularly narrow at the unphysical quark masses used in this study).
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Fig. 5.4 Phase shift extracted for the I D 1 P -wave �� scattering channel that contains the �
resonance. Figure courtesy of J. J. Dudek following [127]

Systems involving kaons and heavy mesons have also been investigated, with
studies of K� scattering in I D 1=2; 3=2 [314, 324–327], KK scattering in
I D 1 [314], D� scattering [328, 329], DK [128], DD scattering [330–332],
J –� scattering [333] and finally of � –� and �b–� scattering using lattice non-
relativistic QCD for bottom quarks [334]. Interestingly, in the case of open charm
scattering [332], there are indications of a possible sub-threshold state with the
quantum numbers of the phenomenologically interesting X(3872) state, although
further studies of volume and lattice spacing dependence are needed.

5.3.6.2 Meson-Baryon Scattering

Meson-baryon systems are of significant phenomenological interest as, at least for
�N , they can be studied experimentally. It is also possible that theK�n interaction
plays an important role in the interior of dense stars where a kaon condensed phase
may appear [335] depending on the strength of various interactions amongst kaons
and nucleons (KK, Kn, Knn,. . . ). In the last few years, there have been relatively few
numerical studies of meson-baryon interactions. Following [336], in which various
meson-baryon channels were investigated, the only recent studies have been of
negative parity �N scattering [337] (see also [338]), and again of the annihilation-
less channels [339], although there have been a number of phenomenological
investigations referred to above.
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5.3.6.3 Baryon-Baryon Scattering

Baryon-baryon scattering is also of great phenomenological interest, and for the
nucleon-nucleon system, the results of many decades of experimental investigation
offer the possibility of precision tests of lattice methods for two-hadron systems
once calculations can be performed at the physical quark masses and the systematics
of the lattice method are accounted for. Other baryon-baryon scattering channels are
difficult to access experimentally and LQCD offers the prospect of providing more
precise determinations of phase shifts than can be made experimentally in many
cases and of providing the only determinations in other cases. Such extractions
would materially improve our understanding of various aspects of nuclear astro-
physics where the interactions of strange hadrons become important. There have
been a number of recent investigations of baryon-baryon scattering parameters and
phase shifts. In [340], hyperon–nucleon scattering and the consequences for dense
nuclear matter were investigated, while [341] presents a study of the NN scattering
lengths and effective ranges in Nf D 3 LQCD at the physical strange quark mass.
All octet-baryon–octet-baryon channels have been investigated by the HALQCD
collaboration in Nf D 3 [294, 342] and Nf D 2 C 1 [295] LQCD using the
potential method discussed above and constructing phase shifts by neglecting the
energy-dependence of the extracted potentials. LQCD also allows the investigation
of more exotic scattering processes such as ˝–˝ scattering, as studied in [343].

5.3.6.4 Dibaryons

The last few years have seen remarkable progress in lattice calculations of baryon
number B D 2 systems (dibaryons). In [345], the first calculation of a QCD
bound-state with B > 1 was presented by the NPLQCD collaboration, albeit at
unphysical values of the quark masses corresponding to m� � 390 MeV. That
calculation concerned the so-called H -dibaryon postulated many years ago [346].
Subsequent works have considered the H -dibaryon further and have also looked
at other B D 2 systems including the deuteron, di-neutron and other more exotic
channels [234,294,344,347–349]. The results of these calculations are summarised
in Fig. 5.5 for the deuteron, di-neutron, H -dibaryon and the strangeness s D �4
���� system (for other channels where there are fewer calculations, the reader is
referred to the original works). In both of the two nucleon channels, it is apparent
that these systems become more bound as the quark masses increase and a naive
linear fit suggests consistency with the bound deuteron and near threshold di-
neutron system at the physical quark masses, although calculations at lighter quark
masses are clearly required to investigate this quantitatively. The H-dibaryon is
predicted, both in simplistic polynomial extrapolations [348] and in �PT-based
extrapolations [350–352], to be very close to threshold at the physical values of
the quark masses, but further calculations at lighter quark masses are also required
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Fig. 5.5 Summary of the results obtained in nf D 2C 1 or nf D 3 lattice QCD calculations of
the binding energies of the deuteron, di-neutron, H -dibaryon and the strangeness s D �4 ����

system. In the case of the deuteron, the red circle corresponds to the experimentally determined
binding energy. For the H -dibaryon, the results labelled HALQCD and NPLQCD 1206.5219 use
three degenerate flavours of quarks and the point atm� D 230MeV (NPLQCD 1103.2821) should
be treated with caution as no infinite volume extrapolation has been performed

to directly ascertain its nature and, as it appears to be a finely-tuned system, care
must be taken to ensure that the effects of discretisation, isospin breaking, and
electroweak contributions are correctly accounted for.10 In the case of the H -
dibaryon, it is also apparent that there is a significant discrepancy between the
SU(3)f symmetric NPLQCD and HALQCD calculations at m� � 800 MeV. This
disagreement is further exacerbated by the calculation of bound deuteron and di-
neutron states at this mass by the NPLQCD and PACS-CS collaborations, in direct
contrast with the non-observation of these states by the HALQCD collaboration
[294]. These two sets of calculations have fairly similar lattice discretisations and

10We note that all of the calculations discussed here are performed at essentially one lattice
spacing, a � 0:1—0.12 fm in the isospin symmetric limit. It is expected that lattice artifacts,
which are typically O.a2/ in these calculations, and isospin-breaking effects produce sub-leading
modifications to dibaryon energies.
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Fig. 5.6 Upper row: effective mass plots for one of theH -dibaryon correlators studied in [234] on
three different volumes (3.4, 4.5 and 6.7 fm from left to right, respectively) that lead in the infinite
volume limit to the result indicated by the upright triangle in the lower left panel of Fig. 5.5. The
horizontal line indicates the two hadron threshold. Lower row: effective mass plots for the deuteron
and di-neutron system at one volume (5.8 fm) associated with the PACS-CS data points in Fig. 5.5
(from [344])

volumes and the minor differences are unlikely to account for the discrepancy.
These calculations also differ in methodology, with NPLQCD and PACS-CS (in
the case of two-nucleon systems) performing spectroscopy in multiple volumes
(see Fig. 5.6 for representative effective mass plots from the H -dibaryon study in
[234]; also shown are effective mass plots from the two-neutron systems studied in
[344]) and HALQCD using the potential method discussed above. These differences
suggest that there may be systematic effects that are underestimated in one or both
approaches and it is very important to resolve this discrepancy.

5.4 Multi-Hadron Systems: Theoretical Framework

The theoretical tools with which to understand the lattice calculations of systems
with the quantum numbers of many hadrons are far less developed than those in the
two-hadron sector. Nevertheless, this is an active area of research as the potential
impact of such investigations is significant, both in nuclear physics where nuclei
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present a plethora of example systems, and in particle physics where multi-hadron
decays necessitate an understanding of the final state interactions in such systems.

5.4.1 Three-Body Systems

In the three body sector, investigations based on effective field theory have been
presented in [353–360]. Very recently, a fully relativistic analysis based only on the
properties of the three-particle scattering amplitude has been presented [361]. The
program developed in these works allows three-hadron interactions to be extracted
from a detailed analysis of the QCD spectra of two- and three-hadron systems at
finite volume. However, such a numerical analysis has only been attempted in the
case of pion systems where the interactions are perturbatively weak [314,362–364].
There are also attempts to extend the potential method to three-body systems [365].

5.4.2 Many-Meson Systems: Threshold Expansion

For hadronic systems with perturbatively small interactions, it has been possible to
extend the finite-volume analysis to the case of arbitrary numbers of hadrons and
provide a direct link between the ground state energies of multi-hadron systems and
the underlying two-body, three-body, and, in principle, higher-body interactions.
Following the classic works of Lee, Huang and Yang [230,231], and [353,354,366]
developed an expansion of the energies of an n-boson system in terms of the particle
number, the two- and three-body interactions and the size of the box. Considering
spin-less particles, the interactions arise in a Hamiltonian form as

H D
X

k

h


k hk

� jkj2
2M

� jkj
4

8M3
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where the operator hk annihilates a boson with momentum k with unit amplitude,
the two-body scattering length and effective range are a and r , and the three body
momentum independent interaction is characterised by the parameter �3.�/ which
depends on the renormalisation scale, �.
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At O.1=L7/, the shift in energy of n bosons of massM from the non-interacting
case is given by [354]
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where the parameter a is the inverse phase shift at the given energy and is related to
the scattering length and the effective range by

a D a � 2�

L3
a3r

�
1 �

�
a

�L

�
I
�
: (5.35)

The geometric constants, I; J ; K; L; T0;1, that enter into Eq. (5.34) are defined
in [354] and nCm are the binomial coefficients. The three-body contribution to the

energy-shift given in Eq. (5.34) is represented by the parameter �
L

3 (which is closely
related to �3.�/ in Eq. (5.33), see [354]). This expansion of the energy shifts has
been generalised to the case of two different species accurate to O.L�6/ in [367].

The expansion above is valid when both the scattering length and effective range
are small compared to the size of the box. Unlike the Lüscher analysis of two-body
systems, this form is a perturbative approximation that works close to threshold and
requires a=L 
 1 as well as r=L
 1 (as also required in the Lüscher approach).
It is straightforward to expand the Lüscher result near threshold [125] and show that
the n D 2 case of the above expression reproduces this expectation. In addition,
it can be seen from Eq. (5.34) that this expansion requires that the system is dilute
such that na=L
 1 as the factors in the square brackets in Eq. (5.34) grow with n.
The breakdown of the expansion as n increases for fixed L, becoming less dilute,
can be seen numerically [315].
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5.4.3 Many Baryon Systems

Two issues complicate the extension of the above discussion to the case of
many baryons. Firstly, the spin degree of freedom carried by baryons (or indeed,
higher-spin bosons) complicates the interactions and one may expect a much
more elaborate form for such energy shifts. More importantly, in multi-nucleon
systems, the interactions are sufficiently strong such that bound states form and the
applicability of the perturbative expansion used in Eq. (5.34) is limited. In order to
fully understand the spectrum of such systems, a resummation must be performed,
but an analytic form for this is not known beyond n D 2.

A practical approach to the problem may be to perform a purely numerical
matching on to the appropriate hadronic effective theory. That is, to compute
the finite volume spectrum of an A baryon system both in lattice QCD and in
the effective field theory and to demand that they agree, thereby determining the
appropriate low-energy constants of the EFT. While simpler than the A baryon
lattice QCD calculations, finite volume A body EFT calculations are non-trivial to
perform. A promising approach is perhaps to make use of the methods developed
in [368, 369] and perform the calculations using a latticised version of the EFT that
can be studied using Monte-Carlo methods.

5.5 Multi-Hadron Systems: Contraction Methods

A major part of the challenge of nuclear physics is in the complexity of the many-
body problem that it encompasses. Even at the level of an effective description of
nuclei in terms of nucleons, the combinatorics of multi-nucleon systems provide
limitations to our ability to perform calculations [221, 370], and for large A,
techniques that do not explicitly treat the A nucleons are currently necessary. At
the fundamental level of QCD, the problem is seemingly even more difficult as each
nucleon is made up of a minimum of three quarks.11

The machinery of calculating hadronic observables in LQCD begins with the
construction of correlation functions as in Eq. (5.3). For simple quantities such
as energies, a source and sink are chosen where, by the choice of appropriate
combinations of quark and antiquark fields, states with the quantum numbers of
the system in question are created and destroyed, respectively. To evaluate this
matrix element, the creation and annihilation operators in the quark fields must
be paired in all possible ways, forming various different Wick contractions. For
a given nuclear system with atomic number A and proton number Z, the number
of such contractions is Ncontractions D Q

f Nf Š ! .2A � Z/Š.A C Z/Š where Nf

11It is an interesting and subtle question as to whether a nucleus is indeed more complex than a
proton; from the QCD point of view, both are complicated systems made of many quarks, anti-
quarks and gluons.
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is the number of quarks of flavour f , and the product runs over all such flavours
(the second relation only follows for non-strange nuclear systems). Their evaluation
consequently seems to be an exponentially difficult task for systems with large
numbers of hadrons. The presence of symmetries, Pauli blocking and cancellations
amongst contractions means that this counting can be a vast overestimate, but
determining the minimal set of contractions, and the optimal way in which to
perform them, is a non-trivial task.

5.5.1 Mesonic Systems

For the case of systems with zero baryon number but large isospin charge, Iz (which
naively correspond to large numbers of charged pions), efficient algorithms have
been developed to perform the required contractions. An important approach that
was developed in [364] is recursive and is based on forming partly-contracted
hadronic blocks which can then be combined sequentially to produce many pion
correlation functions. This is illustrative of the sorts of ideas that can be used to
speed up calculations of contractions and we briefly outline the steps involved for
the case of a single source location, directing the reader to the original work for a
more complete discussion.

A typical correlation function with the quantum numbers of I D Iz D n is
given by

Cn�C
.t/ D

*  X
x

�C.x; t/
!n  

��.0; 0/
!n +

; (5.36)

where the quark-level interpolating operator �C.x; t/ D d.x; t/ �5 u.x; t/ and
�� D .�C/. Integration over the fermionic degrees of freedom turns this into an
expression involving quark propagators, with .nŠ/2 terms. For the correlator above,
which has identical source interpolators for each of the n terms in the source (the
second parentheses), a twelve component anti-commuting Grassmann variable, �,
can be introduced in order to write the correlation function as

Cn�C
.t/ D nŠ h � �i Aij.t/ �j

�n i ;
Aij.t/ D

X
x

ŒS.x; t I 0; 0/�ik

S.x; t I 0; 0/�

kj
; (5.37)

after the quark field has been integrated over. Here, S.x; y/ D ŒM.x; y/��1 is the
quark propagator and the indices run over spin and colour. The 12� 12 matrix A.t/
forms the basis for recursively constructing a series of matrices Rn.t/ whose traces
are the correlation functions above; formally,

ŒRn�ij D ui .0/dk.0/
ı

ıdk.0/

ı

ıuj .0/
Cn�C

; Cn�C
D hRni ; (5.38)
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where h: : :i indicates a trace over spin-colour indices. In terms of this, the following
recursion relation can be readily derived

RnC1 D h Rn i A � n Rn A ; (5.39)

with the initial condition that R1 D A. This relation allows the evaluation of the
correlators, Cn, with linear complexity.

Recursion relations have also been constructed for systems with multiple source
locations and for systems containing different species of mesons. In addition, by
making use of the closure of correlation functions when the 12 spin-colour degrees
of freedom at a given source location are all used, descending recursion relations can
be constructed (see [364] for details). A further version of these relations has been
constructed in momentum space in [315]. It is interesting to note that the multiple
source location problem can be addressed using the same recursion, Eq. (5.39). For
Ns source locations y1; : : : ; yNs , we can enlarge the definition ofA to a 12Ns�12Ns
matrix

A.t/ D

0
B@
AŒ11�.t/ : : : AŒ1Ns �.t/
:::

: : :
:::

AŒNs1�.t/ : : : AŒNsNs �.t/

1
CA ; (5.40)

where

AŒij � D
X

x

S.x; t I yj ; 0/ S.x; t I yi ; 0/ : (5.41)

Using this matrix as the seed for the recursion, that is, takingR1 D A and replacing
A by A in Eq. (5.39), we generate 12Ns � 12Ns matrices, Rn, whose traces over
colour, spin and source site indices are correlators for the n pion systems for
0 < n < 12Ns. In contrast to the single source correlators above, and to the multi-
source correlators explicitly constructed in [364], these correlators are combinations
of correlators of n pions coming from the Ns different source locations in all
possible ways. Nevertheless, independent of the precise form of the interpolating
operators that create them, the energies of the extracted eigenstates are the n pion
system energies.

An number of alternative, even more efficient, approaches to many-meson
contractions were developed in [315, 371] and make use of modified fast-Fourier
techniques that use a divide-and-conquer approach to evaluate the contractions.
These algorithms scale only polynomially with n and allow the investigation of
systems with large isospin. The calculations become more involved however, as
significant care must be taken in order to avoid numerical roundoff issues and obtain
accurate results, necessitating the use of high- or arbitrary- precision libraries such
as qd [372] and arprec [373]. Nevertheless, one of the approaches in [315] has
been used in numerical calculations of systems with isospin charge up to Iz D 72,
as will be discussed below.
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By constructing appropriate “blocks” (the equivalent of the objects A in
Eq. (5.37)), these approaches can also be applied for more general mesonic systems,
including those with different species or with Iz < jI j, and to calculating three-point
multi-meson correlation functions to study multi-meson matrix elements.

5.5.2 Baryonic Systems

In [374–376], algorithms have been developed to perform the more complex
contractions that appear in multi-baryon systems with the aim of allowing studies
of systems with large numbers of baryons. The fundamental approach used in these
works is to perform contractions by iterating over a minimal list of indices of quark
fields and corresponding weights.12 Using the notation of [375], any nuclear two-
point correlation function can be expressed as

hN h
1 .t/

NN h
2 .0/i D

1

Z

Z
DUDqD Nq N h

1 .t/
NN h
2 .0/ e

�SQCD ; (5.42)

where the N h
i are nuclear interpolating operators constructed from quark, and

possibly gluon, fields. The source and sink interpolating operators must have
commensurate quantum numbers, but there is an enormous degree of freedom in
defining these operators. Generically, any such definition can be encapsulated in the
following form

NN h D
NwX
kD1
Qw.a1;a2���anq /;kh

X
i

�i1;i2;��� ;inq Nq.ai1 / Nq.ai2/ � � � Nq.ainq / ; (5.43)

where the aj are generalised indices that combine the colour, spin, flavour and
space-time indices of the quark, i represents the nq-plet .i1; i2 � � � inq / and �i1;i2;��� ;inq

is a totally anti-symmetric tensor of rank nq . The Qw.a1;a2;:::anq /h are the weights for the
given term in the sum and Nw is the total number of terms in the sum. To perform
the contractions most efficiently, the number of weights is reduced to the minimum
by applying explicitly the antisymmetrisation implied by the Grassmannian nature
of the quark fields and by enforcing the symmetries of the state under consideration.

12The methods of [374, 375] differ in the way in which the lists of weights are constructed.
Reference [374] iterates over the full, factorially-large set of possible index values, whereas [375]
constructs the index lists recursively by building a multi-baryon system up one baryon at a time. In
[376], the recursive approach is further developed with a clever definition of the antisymmetrisation
operation.
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The entire correlation function can then be constructed as
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where, the quark fields have been integrated over and, as before, M is the Dirac
operator and Sg is the gauge action.

This expression can be rewritten in a number of ways. Firstly, defining the matrix

G.a0I a/j;i D
(
ŒM�1�a0
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j 2 a0 and ai 2 a

ıa0

j ;ai
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; (5.45)

the correlator can be written as a sum of determinants
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where each term in the sum can be evaluated very quickly since the nontrivial part
of the matrix G is relatively small. The cost of this approach for generic choices of
interpolators is hidden in the number of terms contributing to the sums in Eq. (5.47)
which can be very large. However, there are many choices of interpolating operators
for which the number of reduced weights is small. As an example, a 4He correlator
can be evaluated with a single term in the sum by demanding that the weights are
arranged so that they restrict all 12 quarks to be at a single point. By using multiple
source locations, this idea can be extended to larger systems and in [375], correlators
with the quantum numbers of 8Be, 12C, 16O and 28Si have been constructed and
studied numerically.

A second way to make use of the above generic correlator form is to realise that it
may be advantageous to construct multi-hadron states from localised colour-singlet
single hadron states of particular momenta. While only the total momentum of the
multi-hadron system is a quantum number, constructing states in this way appears
to provide strong overlap onto scattering states [312, 341]. This can be formulated
in terms of quark-level weights, but can be made more compact by defining nuclear
interpolators first at a hadronic level:

NN h D
MwX
kD1
QW .b1;b2 ���bA/
h

X
i

�i1;i2;��� ;iA NB.bi1/ NB.bi2/ � � � NB.biA/ ; (5.47)



5 Nuclear Physics from Lattice QCD 183

where Mw is the number of hadronic weights QW .b1;b2���bA/
h (reduced to the minimal

set through the application of possible symmetries), B.bi / are baryon interpolating
fields and the bi are generic indices that include parity, angular momentum, isospin,
strangeness, and spatial indices. Equations (5.43) and (5.47) can be equated by
replacing the baryon interpolating fields by a given quark level expression,

NB.b/ D
NB.b/X
kD1
Qw.a1;a2;a3/;kb

X
i

�i1;i2;i3 Nq.ai1/ Nq.ai2 / Nq.ai3/ : (5.48)

The original weights, Qwh in Eq. (5.43) can be expressed in terms of the hadronic and
baryonic weights QWh and Qwb through the convolution of Eqs. (5.47) and (5.48). In
order to incorporate the quark propagators, we can define baryon blocks
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with the second line holding in a correlation function after integration over the
quark fields. The complete correlation function can then be written in terms of these
objects. Note that at the source (or the sink, but not both), we can uniquely associate
the quarks to a particular hadron, but at the sink (or the source), this is not the case
and the indices on Ba0

1a
0

2a
0

3
.b/ will be contracted amongst the weight factors arising

from different hadrons.
In all of these approaches, there is still an intrinsically poor scaling with baryon

number implied for all but the simplest choices of multi-baryon operators. For
the simplest operators, the cost of contractions in manageable as it scales as
A3, but more complex operators require a larger set of terms (in the worst case,
growing factorially with A) to be considered. There is considerable room for further
improvements, with the goal being to find choices of operators that are both good
interpolators onto the states of interest and are also computationally expedient.

5.6 Many Meson Systems

For many years, the many-body nature of nuclei, and the corresponding complexity
of contractions, has dissuaded lattice QCD practitioners from tackling such systems.
For this reason, significant effort has been devoted to studying the simplest multi-
hadron systems, those with the quantum numbers of many pseudoscalar mesons
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[314, 315, 362–364, 377]. Unlike multi-baryon systems, these systems do not suffer
from exponentially growing statistical noise problems.13 As discussed above, these
systems have served as a useful testing ground for ideas related to the many-body
nature of the multi-hadron systems in general. In terms of physics, pion and kaon
gases have also proved interesting as they have enabled investigations of the physics
of systems at non-zero isospin/kaon density. Three main avenues have been pursued
as discussed below.

The first studies of multi-meson systems focused on I � 5 [362] and the
I � 12 [363] systems and undertook an extraction of the energies of these states
and, using Eq. (5.34), of the zero momentum, I D 3 three-pion interaction for
the first time, finding it to be repulsive and commensurate with estimates based
on naive dimensional analysis. These studies were followed up with investigations
of multi-kaon systems [377] and mixed systems containing both pions and kaons
[314]. Further studies of systems with even larger isospin charge [315, 378] also
investigated the three pion interactions, but did not significantly improve on the
previous extractions.

For larger isospin charge, it is more useful to think of the many-pion states that
are created as corresponding to statistical systems of fixed isospin charge density
(the “number of pions” in the system becomes ambiguous). In this way, it is possible
to study the structure of the system as a function of isospin density. An important
quantity that can be determined is the ground state energy density of the system as
was studied in [315] and is shown in Fig. 5.7. The energy density displays a sharp
peak at an isospin density, �.crit/

I � 0:5 fm�3 which provides a signal of the transition
from a pion gas to a Bose-Einstein condensate (BEC) of pions as expected from
analysis of the system in �PT [379]. An “effective isospin chemical potential” (it is
the derivative of the ground state energy rather than the free energy) can be defined
from the derivative of the energy with respect to the density. The transition to the
BEC occurs at an isospin chemical potential� 1:3m� , close to the expectation from
�PT. For even larger isospin density, the energy density appears to saturate, albeit
with growing uncertainties. Based on asymptotic freedom, it is expected [379] that
the system should undergo a crossover to a BCS state at large chemical potential.
However, it is not clear whether the current numerical investigations reach high
enough density to explore this regime.

In addition, the non-zero isospin density medium created by these correlation
functions has been used to investigate its influence on other observables. The first
such study considered the static quark potential between an infinitely heavy quark
and anti-quark [380] where it was found that there is a screening effect caused
by the presence of the isospin density. At low densities in the region of constant
force (linear rising potential), the effect provides a screening of the force that
is proportional to the density and independent of the separation. This work was

13For kaons there is a minor problem with the growth of noise.
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Fig. 5.7 The ratio of the energy density of isospin charged matter to that of a free gas is shown
as a function of isospin density for three different lattice volumes (following [315]). The peak
is conjectured to correspond to the transition of the system from a pion gas to a Bose-Einstein
condensed phase

improved upon in [334] where a non-relativistic QCD formulation of b quarks
was used to study correlation functions of bottomonium in the presence of isospin
density. Again, a small but noticeable energy shift was extracted and the effects
were commensurate with expectations of a potential model in which the above
modifications of the potential were included. This study allowed investigations of
higher density media than the original work and interesting behaviour was seen at
densities corresponding to those where the peak in the energy density of the medium
itself was observed.

As many of the important questions we are interested in nuclear physics are
encoded in matrix elements rather than simply in the energy spectrum, it is important
to understand how to extract multi-hadron matrix elements from QCD. A first
attempt at this has been made in [381], where the first moment of the pion
parton distribution has been investigated in the presence of a isospin density. Since
the operator insertion is local, these results can be interpreted in terms of the
modification of the single pion parton distribution in a medium with varying isospin
charge and are a direct analogue of the famous EMC effect in nuclei. This is work in
progress, and a number of subtleties involving the finite lattice volume and temporal
extent remain to be investigated.
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5.7 Nuclei and Hypernuclei

The lattice QCD study of nuclei started a few years ago with the high statistics
investigation of the �0�0n and triton systems by the NPLQCD collaboration
[382] at light quark masses corresponding to m� � 390 MeV. In the relatively
small volume used in this work, both states were consistent with being unbound
but the ground state was clearly resolvable. Perhaps most importantly, this study
showed that signals could be obtained for these states. As discussed in more detail
below, the naive expectation is that multi-baryon correlation functions would have
an exponentially decreasing signal-to-noise ratio as a function of Euclidean time
[383], prohibiting useful analysis. In contrast, the study of [382] showed that at least
for the chosen interpolating operators, there is a region of time (referred to as the
“golden window”) in which noise remains constant and physical information can be
extracted for multi-baryon systems. This first study was followed up and extended
by the PACS-CS collaboration who investigated 3He and 4He first in quenched QCD
[384] and more recently in QCD with quark masses corresponding to m� � 500

MeV [344]. After developing new contraction methods as discussed above [375],
the NPLQCD collaboration have performed a comprehensive calculation of a large
number of phenomenologically relevant nuclei and hyper-nuclei for A < 5, albeit
at a heavy quark mass corresponding to m� � 800 MeV [234]. Figure 5.8 shows
a summary of the binding energies of the strangeness, s D 0 and s D �1 three-
and four-body systems that have been investigated, and Fig. 5.9 shows results for
these and the other more exotic systems investigated in [234]. Figure 5.10, shows
representative effective mass plots for energy shifts in various multi-baryon systems;
while they are not as clean as those forA D 2 in Fig. 5.6, significant negative energy
shifts are readily apparent.

Using two body potentials extracted from LQCD, and solving the three- and four-
body Schrödinger equations, the HALQCD collaboration have also investigated
few-body systems [294]. As noted in this study, this approach neglects three- and
four- body interactions, but provides an interesting guide as higher body forces are
expected to be small. Indeed, the two-body interaction alone is sufficient to bind the
4He state at SU(3)-symmetric quark masses where the pion masses are in the range
500 MeV < m� < 1200MeV.

The improved contraction methods discussed above have also enabled the
construction of correlation functions with the quantum numbers of significantly
larger nuclei such as 8Be, 12C, 16O and 28Si [375], opening the way for studies of
these systems. Examples of these correlations are shown in Fig. 5.11, and, while the
correlators for A < 20 show signs of the expected approach to single exponential
behaviour, no statistically meaningful binding energies could be extracted at the
statistical precision used in this preliminary investigation. Indeed, it appears that the
noise is becoming exponentially worse (with a small prefactor) as A increases for
these particular choices of interpolators, which involve multiple lower components
of quark fields, and further improvements are required. Even with high statistics
and improved interpolators, the presence of very closely spaced excitations in these
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Fig. 5.8 Summary of the results obtained in nf D 2C 1 or nf D 3 lattice QCD calculations of
the binding energies of 3He, 3�H, 4He and 4

�He. The red circles correspond to the physical binding
energies (for 4

�He experimental determinations of both iso-doublet states are shown). For 3
�He,

both J D 1=2 and 3=2 states were extracted, with the higher spin state being more tightly bound
for this SU(3)f symmetric quark mass

complex systems will make extraction of the ground state energy a challenge as will
be discussed below.

From these studies, we can tentatively conclude that light nuclei generically
become more deeply bound as the quark masses increase. Clearly there is a long
way to go before these calculations make direct contact with experiment, but at
least in cases where a trend can be established as a function of quark mass, the
trend is towards the experimental result. Even at unphysical quark masses, such as
those used in the above studies, it is of broad interest to pursue such calculations
as they provide information about possible alternate versions of the Universe. In
looking at nuclear physics in a broader context, it is natural to ask how sensitive
the structure and evolution of our Universe is to the fundamental parameters (for
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Fig. 5.11 Logarithmic plots of correlators for larger nuclei studied in [375]. The points with error
bars reaching the lower axis are consistent with zero at one standard deviation and show where the
signal is lost

all but the earliest times, this is the realm of nuclear physics and, as discussed in
the introduction, the only relevant parameters are �QCD, the fine structure constant
˛f:s: � 1

137
, and the light quark and electron masses), and it is likely that useful

constraints can be determined from ab initio studies. For example, Big Bang
Nucleosynthesis is determined by a network of reactions of light nuclei, some of
which may plausibly be investigated in future LQCD calculations. Changing the
parameters of the Standard Model will modify this network and may make life, at
least as we know it, not viable [385, 386]. In addition, such calculations offer the
prospect of understanding how finely-tuned processes such as carbon production
through the triple-˛ process are. Studies of smaller A systems in LQCD (which will
be computationally feasible in the near future) also have phenomenological impact
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as they can be used to constrain effective field theory based approaches and thereby
play an important role in predictions for larger systems (see [368, 369, 387, 388] for
recent work in this direction). Already, we are gaining surprising insights about such
fine-tunings. In [341], the ratios of the scattering lengths to effective ranges of the
3S1 and 1S0 nucleon-nucleon interactions were studied at m� � 800 MeV. There
it was seen that in the deuteron channel, the fine-tuning of the system that a large
value of this ratio characterises is also present at this unphysically large quark mass.
It is very interesting to see in which other systems, and for which parameter ranges,
such behaviour occurs.

5.8 Current Issues and Future Challenges

As discussed above, significant progress has been made in the last few years,
however the current studies are clearly only the beginning of the application
of lattice QCD to nuclear physics. A number of important issues remain to be
understood and in this section, I summarise these challenges as they appear at the
present time.

5.8.1 Statistical Precision

Since nuclear physics entails small energies on the scale typical of QCD, high preci-
sion calculations are important, requiring precise statistical sampling of correlation
functions. In [383], Lepage pointed out that for single baryon correlation functions,
the ratio of signal-to-noise should decay exponentially with Euclidean time (a fact
borne out in many numerical investigations). If C.t/ is a single nucleon correlation
function, with its average falling asymptotically as exp.�MNt/, its variance is given
by

var.C / D ˝C.t/C .t/
˛ � j hC.t/i j2 ; (5.50)

with angle brackets denoting the gauge field ensemble average. The first term in
this is a correlation function in its own right with the quantum numbers of the
corresponding three quarks and three antiquarks (since fermions are integrated
out exactly, the valence fermion content is fixed in C and C separately). Since
the lightest state with the requisite quantum numbers is a three pion state, the
variance will fall off at large times as exp.�3m�t/ (up to shifts due to interactions)
and correspondingly, the signal-to-noise ratio will degrade as hC i=pvar.C / �
exp.�.MN � 3

2
m�/t/. Generalising to an A baryon system [382], we may expect an

exponentially worse behaviour with the signal decaying into noise as exp.�A.MN�
3
2
m�/t/. As discussed in [382], the choice of interpolating operators that are used

for a particular set of quantum numbers is critical and can be used to some degree
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to delay the onset of these noisiest contributions to a given correlation function. It
is important to systematise these findings and understand to what extent these and
other noise-reducing optimisations (some ideas that may be relevant are discussed
in [389–392]) can be implemented.

The sampling of configurations representative of the vacuum encoded in Eq. (5.4)
is likely a particularly inefficient way to determine properties of nuclei, states
that are very different from the vacuum. It is possible that a reorganisation of the
calculation by moving an appropriate part of the multi-nucleon observable into
the Boltzmann weight will result in better statistical determination of multi-hadron
correlations. However, it is not known how to do this effectively while maintaining
positivity of the integration measure, and thereby avoiding the sign-problem that
plagues lattice QCD at nonzero quark chemical potential [393]. Such a technique
would most likely be implemented on an observable-by-observable basis and would
therefore be extremely computationally demanding.

5.8.2 Beyond Spectroscopy

While most efforts in lattice QCD for nuclear physics currently focus on the
spectroscopy of multi-hadron systems, these systems also present a rich set of more
complicated observables that are of phenomenological interest.14 For example, a
precise determination of the matrix elements of the axial current in two-nucleon
systems would impact our understanding of the pp fusion process that powers the
sun and the � d �! n p breakup process used as a neutrino detection mode in
the Sudbury Neutrino Observatory. In addition, any information from QCD about
the interactions of nuclei with dark matter through scalar [394] or other currents
would have immediate phenomenological interest. In [238, 395], the problem of
determining such matrix elements has begun to be addressed.

For two-body final states, this problem is technically similar to K ! ��

decays induced by weak interactions that are of importance in particle physics [396]
(although in the case of � d �! n p and various other nuclear processes, the lepton
injects energy into the hadronic system). In [397], Lellouch and Lüscher developed
the formalism to extract the infinite volume decay matrix elements for K ! ��

(see also [283]). This has recently been generalised to multiple final state channels in
[130, 242] and the reader is referred to the original references for details. Extension
of this work to final states with more than three particles is a challenging problem,
but one that is important to understand before we can consider QCD calculations of
the large range of multi-hadron properties and transitions that are of interest to the
experimental and phenomenological nuclear physics communities.

14As discussed above, in [381], a first numerical investigation of matrix elements of multi-pion
systems has been presented. Even in this simplest case, theoretical difficulties remain to be
resolved.
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Another related topic is the determination of matrix elements of unstable states
such as the� or � resonances (although care needs to be applied in the definition of
such matrix elements). In [398], a possible approach to this problem was suggested.

5.8.3 How Large Is a Large Volume?

In the analysis of two particle systems in finite volume, a requirement for the validity
of the Lüscher approach discussed above is that the system size is large compared
to the range of the interaction which is typically set by the Compton wavelength
of the pion for light pions (at large quark masses, other scales � �QCD become
important [341]). For bound states, the lattice volume must additionally be large
compared to the size of the bound state, the scale of which is set by the binding
momentum, � ; this second constraint is more stringent for shallow bound states
which can be large even on the scale of the pion Compton wavelength. As discussed
in [283], the Lüscher method also requires volumes large enough that the finite
volume spectrum of states is sufficiently dense so that finite volume sums provide a
good approximation to infinite volume integrals. Similar constraints exist in the case
of the potential method and will also arise for higher-body systems. There remains a
question as to what large means: doesm�L; �L > 4 suffice, or are the requirements
more stringent? Precise calculations are needed to address this question, both at
“large” volumes in the region where asymptotic behaviour can be clearly confirmed,
but also in “small” volumes where deviations from theoretical expectations can be
demonstrated. For precise results, it is important to mark out the region in which
systematics such as these are well controlled.

It is likely that a number of earlier calculations with m�L � 4 have additional
systematic uncertainties from volume dependence that is not controlled by the
Lüscher approach (particularly in cases where there is a shallow bound state).
For example, in the NPLQCD calculations of bound states at m� � 390 MeV
[345, 348], data for L D 2:0 and 2.5 fm (corresponding to m�L D 3:9 and 4.9,
respectively) were dropped for this reason, and similar exclusions may need to be
made elsewhere.

5.8.4 Spectral Gaps, Large Volumes and the Approach
to the Chiral Limit

At finite volume, hadron-hadron two-point correlation functions for large Euclidean
times are dominated by exponentials corresponding to a series of poles in energy
arising from states is which the two hadrons move with back-to-back momenta in
their CoM frame (as discussed above, four- and higher-particle contributions are
expected to dominate eigenstates of higher energy). For weakly interacting states,
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the gaps between these states are approximately given by the difference betweenEn
andEnC1 whereEn D 2fM2� 4�2

L2
ng1=2 for two identical hadrons (since n D jnj for

integer triplets n, there are some levels that are not allowed, for example n D 7). As
L increases, these gaps shrink rapidly (quadratically in the case of two hadrons) and
it becomes hard to isolate the different levels. Variational approaches can help to
some degree, but as the states collapse towards each other, they are by definition
becoming more and more alike, so diagonalisation of correlator matrices will
become an almost degenerate problem. Characterisations of this increasing level
density for increasing volume are given in an appendix of [234] for 4He. As pointed
out in [341], in the two-body sector this is further manifest in that the poles in
the Lüscher eigenvalue equation accumulate at threshold and thus extracted energy
levels of a given precision start to straddle these singularities, making extraction of
phase shifts difficult in these energy regimes.

This problem is not unique to the large volume limit. As the quark masses are
decreased toward the chiral limit, pions become lighter. Consequently, the spectrum
becomes denser as, for a given choice of quantum numbers, the energy gap between
the ground state and states that include additional pions (see footnote 1) tends to
zero. The problem is compounded by the fact that one needs to take the infinite
volume limit before, or at least in combination with, the chiral limit so that finite-
volume distortions of individual hadrons remain exponentially small.

This issue is one of the major challenges that must be addressed to open a
path towards nuclear physics at the physical quark masses and seems to require
a significant conceptual advance.

5.8.5 Electroweak Effects

None of the calculations discussed above include the effects of the electroweak
interaction. For simple quantities such at the ratio of pion and kaon decay constants,
f�=fK , lattice calculations are attaining the level of precision where electromagnetic
effects are important and attempts are being made to include them (see [399] for
a recent review). In the future, such effects must also be included in calculations
relevant for nuclear physics. Indeed, as the number of protons increases, so does the
charge and thus the importance of electromagnetic effects, eventually overcoming
the smallness of ˛f:s: � 1

137
, and making inclusion of electromagnetism even more

important in nuclei.

Conclusions
Over the last decade, the numerical implementation of lattice QCD has
realised its potential and become a precision tool for the calculation of
hadronic quantities in particle physics. It has become a crucial part of our

(continued)
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understanding of the Standard Model and an indispensable component in
the search for physics beyond it through precision flavour physics. For many
quantities, current calculations are either already reaching levels of precision
comparable to experiment, or the path toward such precision is clear [400].
More complicated observables and/or effects remain to be, and must be,
considered (examples being the complete inclusion of electromagnetism and
the calculation of so-called long-distance contributions [401]). However, the
first phase of calculations is being successfully completed. In the intrinsically
more complex realm of nuclear physics, lattice QCD is only now making
inroads into our understanding, and represents a new frontier for the field and
also for lattice QCD. As well as providing tests of the Standard Model in a
new regime, the ab initio approach to nuclear physics from the underlying
Standard Model offers exciting opportunities to make reliable predictions for
quantities that are difficult, or even impossible, to access experimentally. In
many areas of terrestrial nuclear physics and in nuclear astrophysics, input
from well constrained calculations is important for guiding and understanding
both experiments and observations. In the context of nuclear physics, lattice
QCD also presents new challenges, both conceptual and numerical, that we
are just beginning to uncover.
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Chapter 6
High Temperature and Density in Lattice QCD

Carleton DeTar

Abstract These lectures provide an introduction to lattice gauge theory calcu-
lations of the properties of strongly interacting matter at high temperatures and
densities. Such an environment is produced in heavy ion collisions and was most
likely present in the early universe. Emphasis is placed, not on formalism, rather
on an intuitive understanding of the nature of the crossover from the confined,
chiral-symmetry-broken phase to the deconfined, chiral-symmetry-restored phase.
Illustrations are taken from results of recent numerical simulations. Connections
with phenomenology are discussed.

Lecture 1: The strong-coupling, high-temperature limit and the Potts
model paradigm

In this first lecture we survey the phenomenology and offer an intuitive understand-
ing of the phase transitions by appealing to approximate models of lattice QCD
applicable at high temperature, strong coupling, and large mass.

6.1 Introduction

6.1.1 Why Study High T and High Density QCD?

Moments after the “big bang”, before the formation of hadrons, the universe passed
through a phase in which quarks and gluons (as well as leptons and photons) existed
in a plasma-like phase. It is conceivable that, even today, a deconfined state of
matter occurs at the cores of very dense stars. This form of strongly interacting
matter is not well understood and surely holds interesting surprises. Understanding
the properties of matter under such extreme conditions involves both experiment
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and theory. To study strongly interacting matter under these conditions, we try to
recreate it in a microcosm in heavy-ion accelerator laboratories at the Relativistic
Heavy Ion Collider at Brookhaven, the Large Hadron Collider at CERN, and at the
Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. What we
learn provides insights into the origin of matter and the phenomenology of dense
stars.

6.1.2 Phenomenology of the Quark-Gluon Plasma

Theoretical studies of the “quark-gluon plasma” have used approximate models,
resummed perturbation theory, and nonperturbative numerical simulation to develop
some understanding of the properties and behavior of quark-gluon matter at high
temperature and density. Some of what we know is well founded in theory and
experiment, but much is speculative. Here is a list of the main phenomenologocial
properties:

• Deconfinement. At high temperature or density, quarks and gluons are no longer
confined in distinct color-singlet combinations.

• Phase transition or crossover. The transition between confined and deconfined
matter at zero baryon density is only a crossover and not a true phase transition
at physical values of the quark masses.

• Chiral symmetry restoration. The loss of confinement is accompanied by an
approximate restoration of chiral symmetry.

• Phase diagram 1. Figure 6.1 gives a speculative phase diagram as a function
of temperature and baryonic chemical potential. The figure indicates a phase
boundary between confined matter (hadron gas) and deconfined matter (quark-
gluon plasma) as well as some unusual and highly speculative phases at very high
density. Sketched are the paths taken as matter evolves in a heavy-ion collision
and in the cooling of the early universe.

• Phase diagram 2. Figure 6.2 shows the phase structure as a function of quark
mass at zero chemical potential. In this case the regions show for what ranges of
quark masses a phase transition of any sort is possible at some temperature. One
should imagine a third, temperature axis extending out of the plane. Then what is
shown is a projection of phase diagram surfaces onto the quark mass plane. What
we see is that at very high quark masses, a first-order phase transition occurs at
some temperature. This region is bounded by a second-order line in the Z.2/
universality class. At quite low quark masses, there is, again, a first-order phase
transition, also bounded by a second order line. This line merges with thems axis
and extends to infinity. Between these first-order regions there is only a crossover.

As we have emphasized, these figures mix some solid theoretical results with
considerable speculation. So far, there is fairly good agreement about what happens
at low baryon number density. There are several open questions: (1) What happens
at high density is not well established. (2) At moderately low density, Fig. 6.1
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Fig. 6.1 Speculative phase diagram for QCD as a function of temperature and baryonic chemical
potential. (right) phase structure as a function of the degenerate up/down quark mass and the
strange quark mass
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Fig. 6.2 Speculative phase structure for QCD as a function of the degenerate up/down quark mass
and the strange quark mass

shows a critical point at the end of the first-order line. Is this correct? Is it
experimentally accessible? (3) At low up and down quark masses, Fig. 6.2 indicates
some uncertainty about whether, at fixed physical strange quark mass, we should
encounter a first order phase transition at a nonzero value of the up/down quark
mass. Present indications are that, if so, that mass is quite small.

How can we make further progress addressing these questions? They all require
a nonperturbative treatment of quantum chromodynamics (QCD). Although the
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underlying field theory for QCD is well-known and widely accepted, the only
reliable method we have for answering nonperturbative questions is through
numerical simulation via lattice QCD. This approach is properly called ab initio,
since the reliability of its results can be improved indefinitely by decreasing the
lattice size (and finding a larger computer!). The lattice version of QCD is not just an
approximation. It is a well-defined regularization procedure with a high-momentum
cut off that can be removed in the same way as in any standard regularization
scheme.

Some disclaimers are in order, however. The numerical methods used to date
have their limitations. First, lattice QCD is most naturally designed to describe
matter in thermal equilibrium with small perturbations from there. But heavy ion
collisions are naturally dynamic. Thus, for example, lattice QCD is not designed
for modeling the expansion and cooling of the quark-gluon plasma. Instead, lattice
QCD can provide the equilibrium properties of the plasma, which then become
inputs to phenomenological models (e.g. hydrodynamic models) of the expansion.

These lectures are intended to give an overview of lattice QCD applied to quark
and gluon matter at high temperature and high density. To help develop some
intuition about high-temperature lattice QCD, we begin in this lecture by discussing
the strong-coupling, high-temperature limit of the theory, making connection with
the statistical mechanical three-state, three-dimensional Potts model.

6.2 Lattice QCD at Strong Coupling

We assume familiarity with the basics of lattice gauge theory from chapter “Lattice
QCD: A Brief Introduction”.

6.2.1 Partition Function

The imaginary-time Feynman path integral formulation is ideally suited for ther-
modynamics. With suitable boundary conditions in the imaginary (Euclidean) time
dimension, namely, periodic for bosonic fields and antiperiodic for fermionic fields,
the integration over classical histories naturally gives us the quantum partition
function

Z D Tr exp.�H=T / D
Z
ŒdU�Œd d N � exp.�S/ : (6.1)

In this notation H is the QCD hamiltonian, T is the temperature, ŒdU� is the Haar
measure over the gauge-field (gluon) links, Œd d N � is the Grassmann measure over
the quark and antiquark fields, and S is the classical Euclidean action for QCD.
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The temperature is related to the Euclidean time extent of the lattice:

T D 1=.N�a/ ; (6.2)

where the lattice spacing is a and the number of lattice sites in the Euclidean time
direction is N� . Thus we can vary the temperature by varying N� and by varying a.
The latter approach is most widely used.

6.2.2 Wilson Action and Noether Current

The Wilson lattice action S consists of a gauge-field part and a fermion part:

S D SG C SF ; (6.3)

where1

SG D 6

g2

X
x;�<�

Œ1 � Re TrUP .xI�; �/=3� ; (6.4)

SF D
X
x

N .x/ .x/ (6.5)

� 	
X
x;�

Œ N .x/.1C ��/U�.x/ .x C O�/C N .x C O�/.1 � ��/U 
�.x/ .x/� :

The gauge coupling is denoted by g, the lattice sites, by the four-vector x, the
coordinate directions by � and �, the plaquette at site x and plane �; �, by
UP .xI�; �/ and the hopping parameter, by 	, which is related to the bare quark
mass M through the relationship 	 D 1=.2aMC 8/.

As discussed in chapter “Lattice QCD: A Brief Introduction”, the fermion action
is bilinear in the fields, so it can be written in compact form as

SF D
X
x;x0

N .x0/M.x0; x/ .x/ : (6.6)

We saw that the path integral over the fermion fields in Eq. (6.1) could be carried
out explicitly, resulting in the determinant of the fermion matrix M.U /, leading to
an integral over just the gauge field:

ZW D
Z
ŒdU� expŒ�SG.U /� detŒM.U /� ; (6.7)

1Note that the fermion field has been rescaled by a factor
p
2	 relative to the notation of

chapter “Lattice QCD: A Brief Introduction”. This normalization is convenient for numerical
implementations.
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For Monte Carlo integration it is important that the fermionic determinant be real
and positive so it can be used as a probability weight for importance sampling. This
is true for all fermion formulations commonly used in numerical simulation. The
Wilson action in Eq. (6.5) satisfies M D �5M�5, from which we can infer that
detM D detM so the determinant is, indeed, real.

For later reference we write the conserved Noether current for Wilson fermions,
which follows in the usual way from the U.1/ symmetry of the action:

J�.x/ D 	Œ N .x/.1C��/U�.x/ .xC O�/� N .xC O�/.1���/U 
�.x/ .x/� : (6.8)

6.2.3 External Point Current

Let us consider introducing an external point charge g in the fundamental represen-
tation of SU(3) into the action. Let it move along the world line C . It modifies the
continuum action through the source term

ıS D
Z
d4xA�a .x/J

a
�.x/ D �ig

I
C

�aA�a dx� : (6.9)

Gauge invariance requires that C be closed. When this term is inserted into the path
integral for the partition function we get a path-ordered exponential of the integral
over the vector potential.

P expŒ�ig
I
C

�aA�a dx�� : (6.10)

On the lattice this turns into a path-ordered product of gauge links:

Z D
Z
ŒdU�Œd d � exp.�S/LC (6.11)

LC D Tr
Y
x;�2C

.1C ��/Ux;� : (6.12)

(For backward hopping we use the convention, ��� D ��� and U��.x/ D U

�

.x � O�/.)
Now we consider placing a static charge in the statistical ensemble. The static

charge worldline C is fixed at x, moving forward only in imaginary time � . The
term LC is then

LC / Tr
N��1Y
�D0

Ux;� I0 : (6.13)

It is called a “Polyakov loop” (also, sometimes “Wilson line”).
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6.2.4 Gauge Theory at Strong Coupling, High T

Taking soluble limits provides insights into the workings of a theory. We recount
an old story that bears repeating for its intuitive value: [402, 403]. We consider the
strong-coupling, high-temperature limit of the Wilson action for just the gluons, in
other words, pure SU.3/ Yang-Mills theory.

The temperature is the inverse of the lattice extent in the imaginary time direction,
as in Eq. (6.2). To get a very high temperature we consider an anisotropic lattice, i.e.,
with different lattice constants in time and space (at ¤ as). Then the Wilson action
takes the form

SG D 6as

atg2

X
x;i

Œ1� TrUP .xI 0; i/=3�C 6at

asg2

X
x;i>j

Œ1� TrUP .xI i; j /=3� ; (6.14)

where the space-time oriented plaquettes (first term) get a larger weight than the
space-space ones (second term). For high temperature we set N� D 1 so at D 1=T ,
and we want at =as 
 1. So we may drop the space-space term. We then have only
UP .x; 0/ and UP .x; i / and the space-time-oriented plaquette becomes

TrUP .xI 0; i/ D TrU0.x; 0/Ui.x/U

0 .xC Oi/U 

i .x/ : (6.15)

The trace takes its maximum value of 3 when U0.x; 0/ D zxI 2 Z.3/, the center of
SU.3/: f1; exp.˙2�i=3/g. The center elements commute with the space-like link
matrices, which then cancel, leaving only the Z.3/ elements. So we approximate
the integral over the gauge fields by a sum over elements of Z.3/:

Z D
Z Y

x;�

ŒdU�.x/� exp.SG/!
X

zx

exp

2
4 6as

g2at

X
x;i

Re
�
z�

x zxCOi
�
3
5 : (6.16)

Our approximation has become the classical three-state, three-dimensional Potts
model, a popular toy model in statistical mechanics.

The Potts model is a generalization of the familiar Ising model, but here there
are three orientations of each spin, rather than just two. Note that the model has
a global Z.3/ symmetry: zx ! Y zx for Y 2 Z.3/. Just as with the Ising model,
the Potts model has a ferromagnetic phase transition from a magnetized (ordered)
phase at low temperature where the global symmetry is spontaneously broken to
a disordered phase at high temperature. The order parameter is the magnetization,
proportional to the expectation value of the spins, hzi. In this Potts model the phase
transition is first order.

In the spin system, we interpret the factor 6as=.g2at / as the ratio J=TPotts where
J is the coupling strength between neighboring spins, and TPotts is the spin-lattice
temperature. So the Potts temperature TPotts is proportional to g2 at fixed at =as . Now
in QCD the renormalization group tells us that the lattice spacings at and as must
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decrease as we decrease g. So at fixed at=as , small g2 corresponds to a high QCD
temperature TQCD D 1=at and a low Potts model temperature TPotts.

So from these considerations we expect to find a first order phase transition in
SU.3/ Yang-Mills theory with an ordered phase at high (QCD) temperature and
a disordered phase at low temperature. The order parameter of the transition is
TrU0.x/, the Polyakov loop in this N� D 1 example. For a more extended lattice, it
is still the “Polyakov loop”:

L.x/ D P exp

�Z
igA0.x; �/d��

�
: (6.17)

This quantity should have a zero expectation value in the low-temperature, disor-
dered phase and a nonzero expectation value in the spontaneously broken, ordered
high-temperature phase.

6.2.5 Chemical Potential

Before extending the strong-coupling, high-temperature analysis to fermions, we
show how to introduce chemical potentials so we can discuss the high temperature
approximation at nonzero baryon number density as well.

The conserved charges on the lattice are the flavor numbers (Qf ) (including
baryon number). In the grand canonical ensemble, the partition function is

ZW D Tr exp

0
@�H=T CX

f

�f Qf =T

1
A : (6.18)

The Noether current in Eq. (6.8) gives us the conserved charge density

�f .x/ D 	Œ N f .x/.1C �0/U0.x/ f .x C O0/� N f .x C O0/.1 � �0/U 
0 .x/ f .x/� ;

(6.19)

from which we may calculate the contribution to the exponential in the partition
function as

�f Qf =T D �f
Z X

�

Qf D
X
x

�f �f .x/ : (6.20)

Note that this term is just like the time-like kinetic term in the action except for a
sign. We get a factor .1C a�/ for forward hopping and .1 � a�/ for backward. It
is more natural to use e˙�a for these factors. So we replace

N .x/.1C �0/U0.x/ .x C O0/! N .x/.1C �0/U0.x/ .x C O0/e�a ; (6.21)

N .x C O0/.1 � �0/U 
0 .x/ .x/ ! N .x C O0/.1 � �0/U 

0 .x/ .x/e
��a : (6.22)
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An important consequence of a nonzero chemical potential is that the fermionic
determinant detM.�/ is no longer real. We can guess this would happen if we
observe that the �5 symmetry we used to prove reality now reads M.�/ D
�5M.��/�5. So detŒM.�/�� D detŒM.��/�. It cannot be used directly as a
Monte Carlo probability weight. A common expedient is to use the magnitude
of the determinant as a probability weight and average over the phase. But the
phase oscillations grow with the volume of the system V . So one cannot take the
thermodynamic limit V !1 with that method.

This vexing problem is called the “sign” problem. It appears in strongly-coupled
electron systems as well, when one considers doping to move away from a half-filled
conduction band.

6.2.6 Fermions at Strong Coupling, Large Mass, High T

Let’s see what happens to the Potts model approximation when we include fermions.
We write the Wilson fermion action for an anisotropic lattice (at ¤ as), and we
include the chemical potential � for completeness:

SF D
X
x

N .x/ .x/ (6.23)

� 	
X
x

Œ N .x/.1C �0/U0.x/e��at  .x C O0/

C N .x C O0/.1 � �0/U 
0 .x/e

�at  .x/�

� 	at

as

X
x;i

Œ N .x/.1C �i /Ui.x/ .x C Oi/C N .x C Oi/.1 � �i/U 
i .x/ .x/� :

The relationship between bare quark mass and hopping parameter is now

1=	 D 6at=as C 2C 2Mat : (6.24)

At very high temperature with N� D 1 we have at =as D 1=.asT /! 0, so we drop
the space-like term in the action. The fermion matrix is then diagonal in space-time
with values on each spatial site

1 � 	.1C �0/ze��at � 	.1 � �0/z�e�at ; (6.25)

where we have introduced the Z.3/ variable as before.
At large mass (small 	) the fermionic determinant becomes

exp

"
h0.	; �/C h.	; �/

X
x

Rezx C ih0.	; �/
X

x

Imzx

#
; (6.26)
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where

h.	; �/ � 24	 cosh.at�/ ; h0.	; �/ � 24	 sinh.at�/ : (6.27)

So our modified Potts model is now

H D �J
X
x;i

Re
�
z�

x zxCOi
� �X

x

ŒhRezx � ih0 Imzx� (6.28)

for values of h; h0 given by Eq. (6.27). So the fermions introduce “external”
magnetic fields into the spin system. In the Ising system there is only one magnetic
field, but because there are three states in this Potts model, we can have two. In this
case the two fields combine to make a complex field. The quark mass introduces an
external real magnetic field, and the chemical potential gives rise to an imaginary
magnetic field. In the Ising system any nonzero external magnetic field removes
the continuous phase transition, resulting in a crossover. At zero field the Potts
system has a first order transition, which weakens as the external field is turned on.
Eventually, it, too becomes a continuous transition at a critical point and, at higher
fields, a crossover. These properties are demonstrated in a numerical simulation of
the Potts model [403]. Results are shown in Fig. 6.3. The imaginary field further
weakens the transition.

Fig. 6.3 Magnetization vs. inverse Potts temperature in the presence of an external field h. Notice
that the first order phase transition disappears with increasing field [403]
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The Potts model gives a good understanding of the large-mass portion (upper
right corner) of the phase diagram of Fig. 6.2. The first order phase transition
degrades into a crossover as the quark masses are decreased. These suggestive
features of the approximate model are confirmed in simulations of QCD [404].

6.2.7 Three-Dimensional Flux-Tube Model of QCD

Some years ago, Appoorva Patel introduced an intuitively appealing toy model
that imitates strong-coupling, large mass, high-temperature lattice QCD [405, 406],
called the “flux-tube model”. The model is equivalent to the three-dimensional
three-state Potts model that we have been discussing, but the degrees of freedom
are quite different.

The flux-tube model on a cubic lattice places quantized Z.3/ electric fluxes `x;i

on next-neighbor links and Z.3/ charges nx on sites. A charge of C1 on a site
represents a quark, �1, an antiquark, and 0 is an empty site. Fluxes and charges are
required to satisfy Gauss’ law mod 3:

X
i

.`x;i � `x;�i / mod 3 D nx : (6.29)

The hamiltonian is, then simply

H D 

X
x;i

j`x; i j Cm
X

x

jnxj : (6.30)

where 
 is the energy of a flux link andm is the mass of a quark. States of the model
must be “singlets” because of the Gauss’ law constraint. As illustrated in Fig. 6.4,
there are meson-like states, baryon-like states, and glueball-like states consisting of
only a flux loop.

Fig. 6.4 Possible “hadrons”
in the flux tube model. Shown
are a “meson”, “baryon”, and
“glueball”

baryon meson

glueball

1

1

1

1−1
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The grand-canonical ensemble for this classical flux-tube model is defined by the
partition function

Z D
X
nx;`x;i

expŒ�.H � �N/=T � ; (6.31)

where the sum is over configurations that satisfy Gauss’ law and N D P
x nx.

Note that there is no complex phase problem at nonzero chemical potential in this
representation.

The equivalence between the flux-tube model and three-dimensional three-state
Potts model is easy to show. The essential step in the derivation replaces the Gauss’
Law constraint in the partition function with the Z.3/ identity on each lattice site:

1

3

X
z

z` D ı`;0 : (6.32)

The z’s become the Potts spins. The flux-tube parameters 
 , m, and � map to the
Potts model parameters.

There are some amusing features of the deconfined phase of the flux-tube model.
At very large quark mass, most of the configurations consist of a continuous fabric of
flux links. At low temperature, there are not enough flux links to create a continuous
fabric. So one could say at low temperature we have a gas of hadrons, which grow
in size as the temperature increases until they connect, leading to the deconfined
phase. Quarks terminate flux lines. At lower quark mass there are enough quarks
that the fabric is not connected at any temperature, so the phase transition is lost.

We learn from this example that we can solve at least part of the sign problem by a
change of basis. In the field basis (gauge links), the complex phase comes from the
imbalance between forward time-like and backward time-like hopping, combined
with the presence of complex time-like gauge links. Integration over the time-like
gauge links enforces Gauss’ Law at each lattice site. Changing from the field basis
to the hadron basis eliminates the complex phase.

With SU.3/ it is much more difficult to formulate the path integral with a basis
change because there are an infinite number of irreducible representations of SU.3/.
Moreover, there will still be a fermion sign problem, just as with electrons in
condensed matter physics. Our simple models don’t expose it. Finally, and probably
most importantly, while the Potts and flux-tube models capture the deconfinement
aspects of the high temperature phase transition, the strong coupling and large mass
approximation doesn’t capture chiral symmetry or its restoration, aspects of the
transition that are most important for high temperature physics at physical quark
masses.

Exercise 1 In mean field theory we consider the statistical mechanics of a single
site, assuming that the neighbors of the site take on the same mean value. So for the
Potts model we have a single-site partition function
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Z.Nz/ D
X

z

expŒ�H.z; Nz/=TPotts� ; (6.33)

where the single-site H.z; Nz/ is obtained from the full H by setting all spins to the
mean value Nz, except for one site, which carries variable spin z.

We then impose self-consistency by calculating the output mean value of the spin
on the single site and requiring that it equal the input mean value.

Do this for the 3D 3-state Potts model with h D h0 D 0, and show that there is
one real solution for low J=T and three real nonzero solutions for sufficiently high
J=T . (In the latter case, the middle one happens to be unstable.) Then show that the
transition is first order.

Maple, Mathematica, or gnuplot can help with the numerics here.

Lecture 2: Deconfining transition

In this second lecture we consider a variety of deconfinement features of the
high temperature transition, including the free energy of a static charge, the
strange quark number susceptibility, insights from dimensional reduction, and the
survivability of hadrons at high temperature. The equation of state is another, but
we defer discussion of that to the last lecture.

6.3 Signals for Deconfinement

6.3.1 Free Energy of a Static Charge

The free energy of a static charge at position x is measured through the expectation
value of the Polyakov loop operator, which we introduced in the first lecture:

L.x/ D P exp

�Z
igA0.x; �/d�

�

Here A0.x/ D P
a �aA

a
0.x/=2 is the time component of the color vector potential

and P represents path ordering. Its expectation value on the lattice is

hL.x/i D
Z
ŒdU�L.x/ expŒ�Seff.U /�=

Z
ŒdU� expŒ�Seff.U /� : (6.34)

As we observed in the first lecture, this operator inserts a static external point source
at position x, so its expectation value gives the difference F0 in free energy between
the ensemble plus an additional static charge and the unmodified ensemble:

exp.�F0=T / D hLi : (6.35)
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Actually F0 D F0.a; T / depends on the lattice spacing and temperature. It is
ultraviolet divergent (� const=a), just as in quantum electrodynamics. Usually, we
renormalize it so

F0.T / � F0.a; T / � F0.a; T0/C const : (6.36)

Exercise 2 The Wilson fermion action for a fermion of bare mass m is

SF D
X
x;x0

N .x/M.x; x0/ .x0/ D
X
x

N .x/ .x/ (6.37)

� 	
X
x;�

Œ N .x/.1C ��/U�.x/ .x C O�/C N .x C O�/.1 � ��/U 
�.x/ .x/� ;

where 	 D 1=.8C 2ma/. The fermion propagator is M�1.x; x0/.
Note that M D 1 � 	H , whereH is called the “hopping matrix”. For large bare

mass (small 	) the propagator, Œ1 � 	H��1, can be evaluated as a geometric series
(hopping parameter expansion). Find the propagator in leading order in 	 for a static
quark over the time interval Œ0; t �.

The partition function in the presence of a static quark at x is

Z
ŒdU� expŒ�Seff.U /�TrM�1.x; 1=T I x; 0/ ; (6.38)

where the trace of the propagator is over color and spin.
So show that exp.�F0=T / is proportional to the Polyakov loop operator, where

F0 is the free energy of a static quark, i.e., the difference in the free energies of the
ensembles with the static quark and without.

6.3.2 Free Energy of a Pair of Static Charges

The free energy of a pair of static charges is constructed in an obvious way from the
product of Polyakov loops:

expŒ�F.R; T; a/=T � D hL.x/L�.xC R/i : (6.39)

At zero T this is the same as the potential V.R/ of separation of a static
quark/antiquark pair. Numerical results are shown in Fig. 6.5. If there are no sea
quark-antiquark pairs, confinement requires that at large separation

lim
R!1F.R/ D 
R : (6.40)
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Fig. 6.5 Free energy of a static quark/antiquark pair as a function of separation in units of
the string tension R

p

 for a variety of temperatures [407]. Results were calculated with three

degenerate flavors of light quarks with masses amq D 0:1 fixed in lattice units. 
 is the
string tension. The band of lines indicates the Cornell phenomenological heavy quark potential,
appropriate at zero temperature. Deviations from this potential with increasing temperature can be
interpreted as a weakening of confinement

This form of the free energy is equivalent to the statement that the expectation value
of the product of two Polyakov loops at separation R falls exponentially with the
area of the region between the loops. Since they are as long as the temporal extent
1=T of the lattice, the area is R=T . So expŒ�F.R; T; a/=T �! exp.�
R=T /.

When sea quark-antiquark pairs are included in the ensemble, they screen
the static charges, as illustrated in Fig. 6.6 (upper left), so we always have,
asymptotically, twice the free energy of a single static quark. The result is finite
at any temperature:

F.R; T; a/! 2F0.a; T / : (6.41)

When sea quark-antiquark pairs are absent, as in pure Yang-Mills theory, there
is no screening, as sketched in Fig. 6.6 (lower right) so F0.a; T / is infinite at low
temperature. Above the deconfinement temperature the free energy is finite. In pure
Yang-Mills theory there is a first-order phase transition separating the deconfined
and confined phases. The static quark free energy is an order parameter for the
transition.

If we introduce dynamical sea quarks into the ensemble, the static quark free
energy is finite at any temperature, but, as long as the quark masses are large, we still
see a dramatic decrease in the free energy as we cross the transition temperature. For
sufficiently large masses, the transition is still first-order, but as the sea quark masses
are decreased, the transition weakens, and eventually there is only a crossover, as
shown in Fig. 6.7. In that case the static quark free energy is only a qualitative
indicator of deconfinement.
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Fig. 6.6 Yellow indicates sea quarks. Brown lines indicate color electric flux. Left, upper: static
quarks screened in the presence of sea quarks and lower, unscreened in the absence of sea quarks.
Right, upper: static quark at high temperature, screened in the presence of sea quarks and lower,
screened by thermal gluon fluctuations in the absence of sea quarks
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Fig. 6.7 Free energy of a static quark Fq.T / as a function of temperature in the presence of sea
quarks [408]. It drops steadily through the transition temperature between 150 and 200 MeV. There
are light sea quarks, so the transition is only a crossover

6.3.3 Strange Quark Number Susceptibility

The number of strange quarks in the ensemble Ns can fluctuate. A measure of
fluctuation is the strange quark number susceptibility,

�s D
˝
N2
s

˛
=.VT/ : (6.42)

It is another qualitative indicator of deconfinement, since fluctuations are controlled
by the Boltzmann factor. In the low temperature, confined phase, strangeness
fluctuations come from fluctuations in the number of strange hadrons. At high
temperature they come from fluctuations in the number of strange quarks. Since
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Fig. 6.8 Strange quark number susceptibility [408], showing a rapid rise in the transition region
between 150 and 200 MeV

strange hadrons are heavier than strange quarks, we expect the fluctuations to
increase with deconfinement. Results from a numerical simulation are shown in
Fig. 6.8.

6.3.4 Dimensional Reduction

Since temperature is determined by the inverse temporal extent of the lattice, high
temperature corresponds to a small temporal extent. At sufficiently high temper-
ature, the four-dimensional Euclidean space-time lattice becomes, effectively, a
three-dimensional Euclidean lattice. This is called “dimensional reduction.”

Euclidean time boundary conditions

Aa�.x; �/ D Aa�.x; � C 1=T / periodic (6.43)

q.x; �/ D �q.x; � C 1=T / antiperiodic ; (6.44)

lead to different behavior for bosons and fermions in the dimensionally reduced
lattice. This can be seen from a Fourier decomposition in imaginary time � :

Aa�.x; �/ D
1X

nD�1
exp.i!b;n�/Aa�;n.x/ for !b;n D 2�nT (6.45)
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q.x; 0/ D
1X

nD�1
exp.i!f;n�/qn.x/ for !f;n D 2�.nC 1

2 / T : (6.46)

For free fields the mass-shell condition becomes

p2x C p2y C p2z C !2n Cm2 D 0 ; (6.47)

where the fermion Matsubara frequencies are !f;n, and the boson Matsubara
frequencies are !bn.

In a Euclidean world, any direction can be called imaginary time. So we swap z
and � and let E D ipz. Then the free-field mass-shell condition becomes

E2 D p2x C p2y C !2n Cm2 : (6.48)

We get a tower of 3D bosonic fields, one for each Matsubara frequency:

E2
n D p2x C p2y Cm2

b C .2�nT/2 : (6.49)

Likewise, we get a tower of 3D fermionic fields, one for each Matsubara frequency:

E2
n D p2x C p2y Cm2

f C Œ2�.nC 1
2 /T �

2 : (6.50)

The result is a three-dimensional Euclidean field theory in which the original time
components of the vector potentials Aan;0 become scalar fields, the original spatial
componentsAan;i become 3D vector fields and the fermions qn have effective masses
that increase with T . At high T all fermion fields have high mass regardless of mf ,
and they are rare. Only the n D 0 bosons are massless whenmb D 0.

So at high temperature we get a confining zero-temperature 3D Euclidean gauge-
Higgs field theory! The 3D coupling is g

p
T . Since it is confining, we get an area

law for the Wilson loop, which corresponds to a space-like Wilson loop in 4D. We
expect confinement effects for momenta less than g2T . The confined states in 3D
correspond to spatial screening in 4D:

hA.0/B.r/i ! exp.��r/=r : (6.51)

For a quark bilinear, A D Nq� q, the screening mass at high T is twice the effective
mass of the lightest 3D quark (n D 0), or � � 2�T . Note, also that QCD exhibits
“spatial confinement” even at the highest T !

The thermodynamic potential can be calculated in low order QCD perturbation
theory. It has the form

˝.T / D c0.T /C ˛sc1.T /C ˛3=2s c3=2.T /C ˛2s c2.T /C : : : : (6.52)



6 High Temperature and Density in Lattice QCD 213

Because of spatial confinement, we expect nonperturbative contributions to enter at
order ˛3s . A simple way to see that is to note that confinement affects states moving
with low momenta, such that p < g2T . The corresponding volume of phase space
goes like g6T 3.

6.3.5 Hadrons in the Thermal Medium

Another anticipated aspect of deconfinement is that hadrons dissociate. Given
that the transition is a crossover, the dissolution should occur gradually as the
temperature is increased through the transition. Indeed hadrons might persist
as quasi-bound states or resonances at temperatures above the transition. (In a
statistical ensemble at any temperature, there are no true bound states because
scattering with the medium destroys any initial state.)

The static quark potential in Fig. 6.5 shows short-range attraction even at 1:15Tc.
Of course these results are for static quarks, so they do not account for the response
of the medium to the motion of light quarks. Still, they suggest, at least, that heavy
quarks might bind, since they move slowly in a bound state, in which case the Born-
Oppenheimer approximation might apply.

There is a way, albeit difficult, to study the survival of a hadronic state in
a thermal plasma without making the Born-Oppenheimer approximation. This
method involves extracting the real-frequency spectral response from the Euclidean
time correlator that excites the hadronic state in question. We start with the thermal
correlator

˝
O.x; 0/O.y; �/

˛
(6.53)

and do the spatial Fourier transform (using momentum conservation)

C.p; �; T / D ˝O.p; 0/O.p; �/
˛
: (6.54)

where p D jpj. The real-frequency spectral decomposition of the correlator reads

C.p; �/ D 1

2�

Z 1

0

d! �.!; p; T /K.!; �; T / ; (6.55)

where the kernel function is

K.!; �; T / D cosh!.� � 1=2T /
sinh.!=2T /

: (6.56)

The spectral density �.!; p; T / has peaks in ! marking resonances that couple to
the operators in the correlator. An example for the J= is shown in Fig. 6.9.
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Fig. 6.9 Charmonium spectral density as a function of frequency (energy) at 1:2Tc (left) and 2:4Tc
(right) from [409], suggesting that charmonium survives at 1:2Tc , but possibly not at 2:4Tc

Although the method is interesting, it is numerically extremely challenging. The
correlator C.p; �; T / is measured only for discrete � D 0; 1; : : : ; N� � 1. In fact,
because of symmetries under � ! N� � � , there are only N�=2 C 1 independent
points (for even N� ). But �.!; p; T / has values on the real ! line. Thus solving
for the spectral density is an ill-posed problem. To get a meaningful resolution
in frequency, one needs a high precision determination of the correlator and many
imaginary time points. (An anisotropic lattice with at 
 as helps.) To reduce the
ambiguity in the result, it is popular to add extra constraints. A common one goes
by the name “maximum entropy” [410]. Essentially, it favors a spectral density that
deviates from a default spectral density only as much as required by the data –
essentially an Occam’s razor or Bayesian prior. Of course, the result then depends
to some extent on the choice of the default spectral density.

The same method is used to extract transport coefficients, such as the electrical
conductivity and shear and bulk viscosity, important for hydrodynamics [411, 412].
These quantities control the behavior of the spectral density of the correlator of
the electromagnetic current and the stress-energy tensor, respectively, close to zero
frequency.

Lecture 3: Chiral symmetry restoration

In this third lecture we consider features of the high temperature transition
related to the partial restoration of chiral symmetry, including the behavior of the
chiral condensate, the chiral susceptibility, and the hadron spectrum. Also discussed
is the question of the restoration of the gauge anomaly and an analysis of the
universal critical behavior.
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6.4 Signals for Chiral Symmetry

Let us recall what is meant by “chiral symmetry”. We start with the continuum
Euclidean fermion action for Nf flavors in the presence of a color vector field:

SF D
NfX
f D1

Z
d4xŒ N f .x/��.@�CigAa��

a=2/ f .x/Cmf
N f .x/ f .x/� : (6.57)

If all masses are degenerate, the action is invariant under an SU.Nf / � U.1/
transformation. That is, the action is invariant under an infinitesimal change in the
fermion fields  .x/!  .x/C ı .x/, given by

ı .x/ D �i�0=2C i�k�k=2� .x/ ; (6.58)

where �k are generators of SU.Nf /. A consequence of this symmetry is that hadrons
appear in degenerate flavor multiplets.

When the fermion masses are zero the symmetry increases to SU.Nf /L �
SU.Nf /R � U.1/� UA.1/. The action is invariant under the infinitesimal change

ı .x/ D �
i�0=2C i�k�k=2C i�0�5=2C i�k�k�5=2

�
 .x/ ; (6.59)

ı N .x/ D N .x/ ��i�0=2� i�k�k=2C i�0�5=2C i�k�k�5=2� : (6.60)

One might expect larger hadron multiplets as a consequence of this symmetry, but
how it is realized in the hadron spectrum depends on mechanisms that break it, as
we discuss next.

At zero temperature the UA.1/ symmetry (�0 term) is broken by the gauge
anomaly, a quantum effect that appears at one-loop order. Then the axial chiral
symmetry (�k terms) is broken spontaneously at zero temperature. The breaking of
the symmetry results in a nonvanishing expectation value of the “chiral condensates”
for each flavor:

˝ N f  f ˛ ¤ 0 : (6.61)

The spontaneous breaking of the �k symmetry gives rise to N2
f � 1 Goldstone

bosons. Had the UA.1/ symmetry been spontaneously broken, we would have had
one more Goldstone boson.

Since, in nature, the up and down quarks are nearly massless, let us examine in
more detail the Nf D 2 case and consider the transformation of quark bilinears
under the chiral symmetry. We define the interpolating operators (f0 � 
 ; a0 � ı)

�k D N �k�5 ; f0 D N  ; (6.62)

ak0 D N �k ; � D N �5 : (6.63)
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Table 6.1 Mixing pattern of
quark bilinears for two flavors
under SU.2/L � SU.2/R and
UA.1/ transformations

SU.2/L � SU.2/R
UA.1/ � W N ��5 $ f0 W N  

l l
a0 W N � $ � W N �5 

Then under an SU.2/ axial transformation

ı�k D i�kf0 ; ıf0 D i�k�k ; (6.64)

ıak0 D i�k� ; ı� D i�kak0 ; (6.65)

and under a UA.1/ (axial) transformation

ı�k D i�0ak0 ; ıf0 D i�0� ; (6.66)

ıak0 D i�0�k ; ı� D i�0f0 : (6.67)

The mixing of the bilinears under both transformations is mapped in Table 6.1.

6.4.1 Chiral Effective Theory and Symmetry Restoration

When quark masses are not zero, but only small, the Goldstone bosons still have
small masses, and they dominate the physics of QCD at low temperature and long
wavelength. This observation leads to a low-energy description of QCD, the “chiral
effective theory” based on N2

f � 1 Goldstone bosons, �k . The nonlinear version of
this theory is usually formulated in terms of the SU.Nf / fields:

U D exp .i O�k�k=f / : (6.68)

Here f is a low energy constant (closely related to the pion decay constant). In
terms of these fields the chiral effective Lagrange density is

L D f 2

4
Tr
�
@�U@�U


�C f 2B Re Tr.MU/ ; (6.69)

where M D diagfm1;m2; : : : g contains the quark masses. B is another low-
energy constant. When M D 0, the Lagrange density is invariant under the chiral
transformation

U ! VRUV

L : (6.70)
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If we put the low energy theory on a lattice with spacing a and make the masses
degenerate, we can approximate the partial derivatives with

@�U.x/ � ŒU.x C a O�/ � U.x � a O�/�=.2a/ : (6.71)

If for Nf D 2 we write U.x/ D u0.x/C iP3
kD1 uk.x/
k , where u � u D 1, then the

kinetic energy term in the Lagrange density becomes

f 2

4a

"
2 � 2

X
�

u.x/ � u.x C a O�/
#
C 2f 2Bmu0.x/ : (6.72)

This is the Lagrange density for a 3D O.4/ ferromagnet. The external field is
proportional to the quark mass m, and the magnetization is proportional to u0 D
TrU=2. These observations lead to some important consequences for the chiral
effective theory and, therefore, for QCD:

1. The chiral model behaves like a ferromagnetic spin system. For Nf D 2 it is
equivalent to an O.4/ model.

2. Quark masses play the role of a magnetic field. Re TrU plays the role of
magnetization. It is the analog of

˝ N  ˛.
3. At low temperatures we expect spontaneous symmetry breaking, and at high

temperatures we expect symmetry restoration, just as with a ferromagnet.
4. Restoration of SU.Nf /L� SU.Nf /R at high T in QCD, therefore seems certain.
5. Restoration of the chiral symmetry is certainly associated with a phase transition.

At nonzero quark masses there need not be a phase transition, and the restoration
is found to be gradual (a ‘crossover’); at sufficiently high mass we expect no
chiral phase transition.

Whether the UA.1/ symmetry is restored is a separate question and depends on
the fate of the anomaly at high T . We have not included this symmetry in the simple
chiral effective theory above. Pisarski and Wilczek [413] did this and concluded that
the nature of the chiral phase transition depends on Nf and on whether the UA.1/
symmetry is simultaneously restored:

1. For Nf � 3 the phase transition is first order.
2. The UA.1/ symmetry should be restored at least asymptotically at high T , but

its restoration need not occur at the same temperature as that of SU.Nf /L �
SU.Nf /R.

3. For Nf D 2, the nature of the phase transition depends on what happens with
UA.1/.

4. If UA.1/ is effectively restored at the same temperature as SU.Nf /L�SU.Nf /R,
the transition can be a fluctuation-driven first-order transition.

5. Otherwise, it is continuous (second order).

These observations allow us to characterize the QCD high temperature phase
transition as a function of the light quark masses, as shown in Fig. 6.10. The figure
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Fig. 6.10 A cartoon showing the character of the QCD high temperature phase transition as a
function of the light, degenerate (up and down) quark masses and the strange quark mass [414].
Key features are the expected first-order phase transition when all three quark masses are small, the
second-order phase transition at zero light quark masses (left axis) when the strange quark mass
is large, the first order deconfinement transition when the quark masses are so large, we recover,
approximately, the Yang-Mills theory, and the crossover region for intermediate quark masses.
Where the physical masses are located in this picture is uncertain, as indicated. In one case, at
fixed strange quark mass, there is a first order phase transition at low light quark mass. In the other
case there is only a second order transition at zero light quark mass

is only a sketch. To make it quantitative requires a lattice QCD simulation, which
can tell us (1) whether there is a phase transition at the physical (nonzero) values of
the light (up and down) quark masses or only at zero quark masses, (2) how large
the masses can be before the phase transition is lost, and (3) at what temperature the
UA.1/ symmetry is (at least effectively) restored?

6.4.2 Signals of Chiral Symmetry Restoration

We list a variety of indicators of chiral symmetry restoration:

1. Chiral condensates
˝ N f  f ˛ The light quark chiral condensate is an order

parameter for chiral symmetry. At zero mass it should vanish when the symmetry
is restored. If quark masses are not zero, we can still use it as an indicator, even
if it is not, strictly, an order parameter.

2. Chiral susceptibility �f D @
˝ N f  f ˛ =@m The susceptibility should peak at the

transition (or crossover) temperature.
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3. Hadron correlators Hadron correlators, which imply, also, hadron masses,
should become equal. For SU.2/L � SU.2/R we have C�.x/ D Cf0.x/.

Cf0.x/ D hf0.x/f0.0/i (6.73)

C�.x/ık;k0 D
D
�k.x/�k

0

.0/
E
: (6.74)

Similarly C�.x/ D Ca0.x/. With restoration of UA.1/ we also have C�.x/ D
Ca0.x/ and Cf0.x/ D C�.x/.
We turn, now, to results from lattice simulations that reflect restoration of chiral

symmetry. The lattice implementation of chiral symmetry depends on the fermion
formulation: The Wilson/clover fermionic actions break chiral symmetry explicitly.
The staggered (asqtad, HISQ) fermions preserve a remnant of chiral symmetry.
Finally, the overlap and domain wall fermions aim to treat chiral symmetry exactly.
For illustration, here, we discuss results for staggered fermions.

The chiral condensate at nonzero quark mass is ultraviolet divergent, which can
be seen at one-loop order in QCD perturbation theory:

˝ N f  f ˛ D mf =a
2 C : : : : (6.75)

Since this divergence appears for each flavor, it can be removed at this order by
subtracting the light quark (mu D md ) and strange quark condensates, leading to
the “subtracted condensate”.

Dud;s.T / D Œ
˝ N  ˛

ud
�mud=ms

˝ N  ˛
s
� : (6.76)

The chiral condensate is also subject to a multiplicative renormalization (indepen-
dent of temperature). This effect can be removed in the ratio

�ud;s.T / D Dud;s.T /=Dud;s.T D 0/ ; (6.77)

before comparing results from different calculations. The resulting quantity from
a lattice simulation is shown in Fig. 6.11. We see a rapid decrease in the chiral
condensate as temperature is increased through the crossover region. Results for the
chiral susceptibility are shown in Fig. 6.12.

As we have remarked above the restoration of the UA.1/ symmetry leads to the
equality of the � and a0 correlators (of the corresponding local bilinears), C�.x/
and Ca0.x/. There is a particularly useful connection between the symmetry of the
correlators and the spectral density of the Dirac matrix at zero eigenvalue [416].
This is seen by considering the related susceptibilities,

�S D
�Z

Ca0.x/d
4x

�
; �P D

�Z
C�.x/d

4x

�
; (6.78)
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Fig. 6.11 Subtracted, normalized chiral condensate as a function of temperature [415]. We see
a rapid decrease in the crossover region 150–180 MeV, indicating a partial restoration of chiral
symmetry
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Fig. 6.12 Unrenormalized chiral (disconnected) susceptibility as a function of temperature [415].
We see a peak in the crossover region 150–180 MeV, an indication of partial restoration of chiral
symmetry

which must also be equal. The susceptibilities are particularly useful, because they
are related to the eigenspectrum of the lattice Dirac matrix:

˝ N  ˛ D �m
Z 1

�1
d�

�.�/

�2 Cm2
(6.79)
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�P � �S D
Z 1

�1
d�

2m2�.�/

.�2 Cm2/2
(6.80)

where m is the degenerate up and down quark mass and �.�/ is the eigenvalue
density. These expressions can be derived from a spectral decomposition of the
quark propagators involved in the correlators. As the quark masses are decreased
to zero, we get

lim
m!0

˝ N  ˛ D ���.0/ ; (6.81)

also known as the Banks-Casher relation [31]. Restoration of the SU.2/L � SU.2/R
symmetry implies that

˝ N  ˛ D 0, so then �.0/ D 0. If a gap opens in the spectrum
at � D 0, then certainly �P � �S D 0 in the limit of zero mass. If, instead, the
spectral density vanishes as �.�/ D A�˛ , with suitable ˛, we can have vanishing˝ N  ˛ and nonvanishing �P � �S .

Thus a study of the eigenvalue density at small eigenvalue can help in testing the
restoration of the UA.1/ symmetry. An example of a numerical test of these ideas
is given in Figs. 6.13 and 6.14 [416]. Lattice results thus far suggest that the UA.1/
symmetry is not restored at the same temperature as SU.2/L � SU.2/R, but more
work is needed [417]. For a recent domain wall study on smaller lattices, see [418].
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Fig. 6.13 Eigenvalue density as a function of eigenvalue for various temperatures [416]. There
appears to be a zero for T > 168 MeV indicating restoration of the SU.2/L � SU.2/R chiral
symmetry
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Fig. 6.14 Eigenvalue density as a function of eigenvalue for various temperatures [416]. Whether
the apparent gap for T > 240 MeV is significant remains to be studied further [417]

Exercise 3 In terms of the Euclidean Dirac matrix M D m C D= , the chiral
condensate is

˝ N  ˛ D TrM�1 : (6.82)

The eigenvalues and eigenvectors of D= satisfy M un D i�nun. Assume that the
antihermitianD= operator also satisfies the anticommutation relation fD= ; �5g D 0.

Prove that (Banks-Casher)

˝ N  ˛ D �m
Z 1

�1
d�

�.�/

�2 Cm2
: (6.83)

where the spectral density is constructed from 1=V
P

n !
R
d��.�/.

Then show that at zero mass
˝ N  ˛ D ���.0/.

6.4.3 Universality and Critical Behavior

The theory of critical phenomena places systems in universality classes according to
their symmetries and spatial dimension. They alone determine the critical exponents
and universal scaling functions that control scaling and the functional dependence
of key quantities close to the critical point.

For the remainder of this lecture we will assume that the critical point appears
only at T D T 0c and mud D 0. Since the relevant chiral symmetry is SU.2/L �
SU.2/R, equivalent to O.4/, QCD is expected to fall into the 3D O.4/ universality
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class. Staggered fermion implementations preserve a reduced symmetry, suggesting
an O.2/ behavior at nonzero lattice spacing. The critical behavior of these two
universality classes is very similar.

We discuss the critical behavior in QCD by rescaling T and mud to give t and h:

t D 1

t0

T � T 0c
T 0c

; (6.84)

h D 1

h0
H for H D mud=ms ; (6.85)

wheremud=ms is the ratio of light to strange quark masses. The quantities t0 and h0
are constants. These variables correspond to the temperature and magnetic field in
the O.4/ spin system.

The free energy density as a function of quark masses and temperature in the
vicinity of a critical point has two contributions, a universal singular part and a
regular part.

f D �T
V

logZ � fsing.t; h/C freg.T;mud; ms/ : (6.86)

Up to a rescaling of the variables (via h0 and t0), the singular part is universal. It can
be expressed in terms of a universal function of a single scaling variable z D t=h1=ˇı
where ı and ˇ are universal critical exponents. The singular part is then

fsing.t; h/ D h1=ıfs.z/ ; (6.87)

where fs.z/ is universal. (In the condensed matter literature, it is often called the
“equation of state”.) So, for example, the scaling function fs.z/ in the 3D O.4/

model is the same as the QCD scaling function.
The free energy is thermodynamically fundamental, since most physical observ-

ables can be expressed as derivatives of the free energy. For many observables the
singular part dominates over the regular part close to the critical point. Where this
happens is called the Landau region. The size of this region is not universal.

The chiral condensate plays the role of magnetization in QCD. We define

Mb �
ms

˝ N  ˛
ud

T 4
; (6.88)

where

˝ N  ˛
ud
D T=V @ logZ=@mud : (6.89)

Then

Mb.T;H/ D h1=ıfG.t=h1=ˇı/C fM;reg.T;H/ ; (6.90)
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where the function fG is universal. The chiral susceptibility is the derivative

�ud D @

@mud

˝ N  ˛
ud
: (6.91)

We get a scaling expression for it by differentiation

�ud

T 2
D T 2

m2
s

�
1

h0
h1=ı�1f�.z/C @fM;reg.T;H/

@H

�
; (6.92)

where

f�.z/ D 1

ı

�
fG.z/� z

ˇ
f 0
G.z/

�
: (6.93)

So the behavior of
˝ N  ˛

ud
and �ud is governed by the same singular function.

A fit to lattice measurements using this analysis is shown in Fig. 6.15. The
universal scaling function used in the fit was taken from a separate study of the
O.4/ spin model. To obtain the agreement shown, it was necessary to include a
regular part, parameterized with its leading-order Taylor expansion in the scaling
variables. A byproduct of this analysis was the value Tc D 154.9/ MeV for the
crossover temperature at physical quark masses

Lecture 4: Connection with phenomenology

In this fourth and last lecture we consider a variety of observables of more direct
interest to the phenomonology of heavy ion collisions, including the equation of
state at zero and nonzero density, the charm quark contribution to the equation of
state, and fluctuations in conserved charges.
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Fig. 6.15 Fit to the chiral condensate (left) and susceptibility (right) to the same scaling function
plus a small regular part [415]
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6.5 Equation of State

6.5.1 Models at Low and High Temperature

At extremes of temperatures some approximations are possible. We discuss the
hadron resonance gas model, applicable at low temperature and the Stefan-
Boltzmann gas model, at high temperature.

6.5.1.1 Hadron Resonance Gas Model

The hadron resonance gas model is a simple (simple-minded!) model often used
as an approximation to the low temperature behavior of QCD. Introduced by
Hagedorn, it approximates the QCD ensemble as a noninteracting gas of mesons and
baryons, including resonances. All particles (and resonances) listed in the Particl
Data Group summary are included. One stops at some cut off mass M . Interactions
are treated only in the sense that resonances are included. One expects the model
to be good for T 
 m� , the lowest mass. If the density of states grows as
dN=dm D C exp.m=Tc/ then the partition function diverges for T > Tc (Hagedorn
limiting temperature). At this point one has to change the model by switching to
quark and gluon degrees of freedom for T > Tc .

In the low temperature limit we get an explicit expression for the partition
function for mesons/baryons (M/B):

logZ D
X
i

logZM C
X
i

logZB : (6.94)

For the i th meson or baryon we have

logZM=B
Mi
D � Vdi

2�2

Z 1

0

dkk2 log.1� zi e
�"i =T /

D VT3

2�2
di

�
Mi

T

�2 1X
kD1
.˙1/kC1 zki

k2
K2.kMi =T / ; (6.95)

where di is a multiplicity factor.

6.5.1.2 Stefan-Boltzmann Limit

In the high temperature limit the QCD running coupling is expected to be small, so
we can treat the quarks and gluons as approximately noninteracting and massless,
leading to the relativistic ideal gas limit (Stefan-Boltzmann gas). In the presence
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of a chemical potential �f for conserved flavor number Nf , the Stefan-Boltzmann
pressure is

pSB

T 4
D 8�2

45
C 7�2

20
C

X
fDu;d;s

�
1

2

��f
T

�2 C 1

4�2

��f
T

�4�
: (6.96)

6.5.2 Equation of State at Zero Density

More generally, at any temperature thermodynamic identities relate the energy
density and pressure to the partition function as follows:

" D T 2

V

@ logZ

@T

ˇ̌
ˇ̌
V

(6.97)

p D T
@

@V
logZ

ˇ̌
ˇ̌
T

: (6.98)

To calculate them separately on the lattice is a bit involved. It is more convenient to
calculate the “interaction measure”

I D " � 3p D �T
V

d logZ

d log a
: (6.99)

For the Wilson gauge action we get

I D �T=V.d logg2=d log a/ hSGi : (6.100)

We must subtract the vacuum value to remove an ultraviolet divergence. From now
on, we assume this has been done and drop the �.

�I D I.T /� I.0/ : (6.101)

Exercise 4 The previous discussion gives the thermodynamic identities that relate
the energy density and pressure to derivatives of the ensemble free energy with
respect to temperature and volume, respectively. On a lattice of a fixed number
of sites N3

s � Nt , the volume is given in terms of the spatial and temporal lattice
constants as and at by N3

s a
3
s , and the inverse temperature is given by atNt . So we

can relate the derivatives in the thermodynamic identities to derivatives with respect
to as and at . To relate these derivatives to the lattice action, one must take care to
include the appropriate factors of as and at in the expression for the lattice action
and to remember that the gauge coupling g2 also depends on the lattice constants.
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With these preliminaries in mind, show that

I � " � 3p D �T=V.d logg2=d log a/ hSGi : (6.102)

For sufficiently large volume the pressure is independent of volume:

logZ D pV=T : (6.103)

so the interaction measure is

I D �T
V

d.pV=T /

d log a
; (6.104)

and, if the temperature is varied by varying a with fixed N� , we can determine
the pressure from it by integrating from low temperature (large a D a0) to high
temperature (small a).

p.a/a4 � p.a0/a40 D �
Z log a

log a0

�I.a0/.a0/4 d log a0 : (6.105)

At sufficiently low T0 we may take p.a0/ D 0, or take its small value from the
hadron resonance gas model.

Exercise 5 Derive the integral expression for the pressure in Eq. (6.105).

For illustration we show some lattice results for a variety of thermodynamic
quantities obtained in the past few years. To find the most recent results, the
proceedings of the annual Lattice conferences are a good place to start.2

Results for the interaction measure are shown in Fig. 6.16. The corresponding
energy density and pressure are shown in Fig. 6.17. Next, the entropy density s D
."C p/=T is shown in Fig. 6.18. Finally, the speed of sound is

c2s D
dp

d�
D � d.p=�/

d�
C p

�
: (6.106)

2Recent proceedings of the Lattice conference series are published by SISSA: http://pos.sissa.it/
and can be found under the search term “Lattice Field Theory.”

http://pos.sissa.it/
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Fig. 6.17 Energy density and three times pressure as a function of temperature from [408]. We see
a strong increase in the temperature range 150–200 MeV. These results are for higher than physical
mass and for nonzero lattice spacing

It is illustrated in Fig. 6.19. All of these quantities are of importance for hydrody-
namic modeling of the quark-gluon plasma. However, it should be noted that these
results are for higher than physical mass and for nonzero lattice spacing and require
extrapolation to physical values to be realistic.
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Fig. 6.18 Entropy density as a function of temperature from [408]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 10 100 1000

ε [GeV/fm 3] 

p/ε

cs
2

243 6(p4)
323 8(p4)

323 8(asqtad)
HRG

Fig. 6.19 Speed of sound from [408]

6.5.3 Equation of State at Nonzero Density

We observed in the first lecture that we cannot simulate directly at � ¤ 0,
because the fermion determinant is complex. For heavy ion collisions, the chemical
potentials are small. Therefore, one is led to a Taylor series expansion for small �.
For the 2C 1 flavor case, the expansion reads

p

T 4
D

1X
n;mD0

cnm.T /
��ud

T

�n ��s
T

�m
; (6.107)
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The coefficients are evaluated at �ud D �s D 0

cnm.T / D 1

nŠ

1

mŠ

1

T 3V

@nCm logZ

@.�ud=T /n@.�s=T /m

ˇ̌
ˇ̌
�ud;sD0

: (6.108)

The derivatives are expectation values of combinations of traces of the inverse of
the lattice Dirac matrix. An example of a calculation at nonzero chemical potential
is given in Fig. 6.20. As in this figure, the results are often shown at fixed ratios of
entropy density to baryon density. Since in heavy ion collisions the strange number
density ns is zero, it is necessary to tune �` D �u D �d and �s to get ns D 0

at fixed s=nB . The tuned trajectories are shown in Fig. 6.21. One often assumes an
isentropic formation and expansion of the plasma. The equation of state at constant
entropy along the trajectories plotted in Fig. 6.21 is shown in Fig. 6.20.

Fig. 6.20 Isentropic equation of state: energy density as a function of temperature at three constant
ratios s=nB of entropy density to baryon number density from [419]

Fig. 6.21 Tuned values of the light quark chemical potential �` and strange quark chemical
potential �h as a function of temperature giving zero strangeness density at three fixed ratios s=nB
of entropy density to baryon number density [420]
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Fig. 6.22 Contribution of the charm quark to the equation of state [419]

6.5.4 Charm Quark Contribution

It is interesting to consider how charm quarks contribute to the equation of state.
Whether the quark plasma in a heavy ion collision has time to equilibrate charm is
an open question, but in the early universe it certainly does. The charm contribution
to the equation of state can be done without including charm quarks explicitly in the
statistical ensemble (quenched charm) with the result shown in Fig. 6.22. We see
that charm effects start to become visible above about T D 200MeV. The stout and
p4 action results are a bit smaller than the result from the asqtad action.

6.6 Fluctuations of Conserved Charges

In a neutral ensemble, conserved charges still fluctuate about zero.

ıNX � NX �NX : (6.109)

So we define susceptibilities of the generic form,

�X2 D h.ıNX/2i=.VT3/ ; (6.110)
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Fig. 6.23 Fluctuations in
baryon number B , electric
charge Q, and strangeness S
as a function of temperature
from [421]. Plotted is the
lattice susceptibility divided
by the hadron-resonance-gas
susceptibility. The magenta
bars and cyan bands show
results of two extrapolations
to zero lattice spacing. We see
that the HRG agrees
reasonably well for B and Q,
but not S
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for X D baryon number B , strangeness S , and electric charge Q. They can be
derived from the second-order Taylor coefficients in the expansion of the pressure
in terms of the chemical potentials:

�X2 D
@2p=T 4

@ O�2X

ˇ̌
ˇ̌
�D0

; (6.111)

�XY
11 D

@2p=T 4

@ O�X@ O�Y

ˇ̌
ˇ̌
�D0

; (6.112)

where O�X D �X=T . Results for these quantities are shown in Fig. 6.23.

Conclusions
What has lattice QCD taught us about the behavior of QCD at high tempera-
ture and density?

1. We have learned a great deal about the qualitative behavior of QCD in
thermal equilibrium at low chemical potential for a few flavors and nonzero
quark masses. This reach of lattice QCD is illustrated in Fig. 6.24.

2. We have fairly good control of a variety of important quantities needed for
hydrodynamic modeling.

3. We have good quantitative predictions for fluctuations in conserved
charges.

(continued)
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Fig. 6.24 A speculative phase diagram for high temperature and density QCD. The shaded region
indicates the current reach of lattice QCD

What might lattice QCD still teach us?

1. We need better ideas/methods for dealing with higher baryon density.
2. We hope to learn more about whether the critical endpoint is accessible to

experiment.
3. We expect to learn more about transport properties: viscosity, electric

conductivity, etc. This is difficult, though.
4. We do not yet have a completely satisfactory understanding of what

happens at the chiral critical point at low mu D md , but this will come.
5. We expect to learn more about the behavior of the QGP in strong magnetic

fields.

Acknowledgements I thank the organizers of the summer school for their hospitality and
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